Normed equivariant ring spectra and higher Tambara functors

Bastiaan Cnossen, Rune Haugseng, Tobias Lenz, Sil Linskens
{"title":"Normed equivariant ring spectra and higher Tambara functors","authors":"Bastiaan Cnossen, Rune Haugseng, Tobias Lenz, Sil Linskens","doi":"arxiv-2407.08399","DOIUrl":null,"url":null,"abstract":"In this paper we extend equivariant infinite loop space theory to take into\naccount multiplicative norms: For every finite group $G$, we construct a\nmultiplicative refinement of the comparison between the $\\infty$-categories of\nconnective genuine $G$-spectra and space-valued Mackey functors, first proven\nby Guillou-May, and use this to give a description of connective normed\nequivariant ring spectra as space-valued Tambara functors. In more detail, we first introduce and study a general notion of\nhomotopy-coherent normed (semi)rings, and identify these with\nproduct-preserving functors out of a corresponding $\\infty$-category of\nbispans. In the equivariant setting, this identifies space-valued Tambara\nfunctors with normed algebras with respect to a certain normed monoidal\nstructure on grouplike $G$-commutative monoids in spaces. We then show that the\nlatter is canonically equivalent to the normed monoidal structure on connective\n$G$-spectra given by the Hill-Hopkins-Ravenel norms. Combining our comparison\nwith results of Elmanto-Haugseng and Barwick-Glasman-Mathew-Nikolaus, we\nproduce normed ring structures on equivariant algebraic K-theory spectra.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we extend equivariant infinite loop space theory to take into account multiplicative norms: For every finite group $G$, we construct a multiplicative refinement of the comparison between the $\infty$-categories of connective genuine $G$-spectra and space-valued Mackey functors, first proven by Guillou-May, and use this to give a description of connective normed equivariant ring spectra as space-valued Tambara functors. In more detail, we first introduce and study a general notion of homotopy-coherent normed (semi)rings, and identify these with product-preserving functors out of a corresponding $\infty$-category of bispans. In the equivariant setting, this identifies space-valued Tambara functors with normed algebras with respect to a certain normed monoidal structure on grouplike $G$-commutative monoids in spaces. We then show that the latter is canonically equivalent to the normed monoidal structure on connective $G$-spectra given by the Hill-Hopkins-Ravenel norms. Combining our comparison with results of Elmanto-Haugseng and Barwick-Glasman-Mathew-Nikolaus, we produce normed ring structures on equivariant algebraic K-theory spectra.
规范等变环谱和高等坦巴拉函子
在本文中,我们扩展了等变无限环空间理论,以考虑乘法规范:对于每一个有限群 $G$,我们都构建了连接真正 $G$ 谱的 $/infty$ 类别与空间值麦基函子之间比较的乘法细化(这是吉鲁-梅首次证明的),并以此给出了连接规范等价环谱作为空间值坦巴拉函子的描述。更详细地说,我们首先引入并研究了同位相干规范(半)环的一般概念,并将其与相应的$\infty$-category of bispans中的保积函子相鉴别。在等价设定中,这将空间值的坦巴拉函数与关于空间中的类群$G$-交换单元上的某个规范单元结构的规范代数相识别。然后我们证明,这一结构与希尔-霍普金斯-拉文尔规范给出的连接$G$谱上的规范单元结构具有典型等价性。结合我们与埃尔曼托-豪森(Elmanto-Haugseng)和巴威克-格拉斯曼-马修-尼古拉斯(Barwick-Glasman-Mathew-Nikolaus)的比较结果,我们得出了等变代数 K 理论谱上的规范环结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信