Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid

Santhosh Kumar Kathuroju, Preeti Prashar, Odelu Ojjela
{"title":"Asymptotic analysis of MHD chemically reacting boundary layer flow of Jeffrey hybrid nanofluid","authors":"Santhosh Kumar Kathuroju, Preeti Prashar, Odelu Ojjela","doi":"10.1002/zamm.202300770","DOIUrl":null,"url":null,"abstract":"Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluids with enhanced heat transport characteristics are essential for efficient convection heat transportation. Hybrid nanofluids have demonstrated their effectiveness as viable substitutes for conventional heat transport fluids. This study explores the heat and mass exchange occurring within a chemically reactive, unsteady boundary layer flow of a copper oxide‐multi‐walled carbon nanotubes (CuO‐MWCNTs)/ethylene glycol Jeffrey hybrid nanofluid. Additionally, the influence of heat source/sink effects in a hydromagnetic environment is carefully added. The study employs a non‐Newtonian flow model and incorporates the Arrhenius activation energy for analysis. The hybrid nanofluid consists of a base fluid, ethylene glycol, enriched with copper oxide nanoparticles and multi‐walled carbon nanotubes. The governing coupled non‐linear partial differential equations are transformed into ordinary differential equations using similarity transformations, considering appropriate free stream, and wall boundary conditions; then, the Shooting method is employed to solve the resulting ordinary differential equations (ODEs) in MATLAB. The graphical and numerical outcomes are studied for various parameter combinations. The graphs illustrate the numerical results for the CuO‐MWCNTs/ethylene glycol hybrid nanofluid. These results are comprehensively discussed to analyze the influence of different thermo‐fluidic parameters on the Jeffrey hybrid nanofluid's heat, mass, and flow characteristics. The skin friction, Nusselt number, and Sherwood number are provided in a numerical table that displays the alterations of these parameters across various parameter values. As the Jeffrey fluid parameter rises, the Nusselt number and skin friction escalate, while the Sherwood number diminishes. Conversely, as the Deborah number rises, the Nusselt number and skin friction decline, but the Sherwood number increases. A comparative analysis with published results confirms the consistency of the present results.
杰弗里混合纳米流体 MHD 化学反应边界层流动的渐近分析
具有增强热传输特性的流体对于高效对流热传输至关重要。混合纳米流体已经证明了其作为传统热传输流体可行替代品的有效性。本研究探讨了氧化铜-多壁碳纳米管(CuO-MWCNTs)/乙二醇杰弗里混合纳米流体在化学反应型非稳定边界层流动中发生的热量和质量交换。此外,还细致地加入了水磁环境中热源/散热效应的影响。研究采用了非牛顿流体模型,并结合阿伦尼乌斯活化能进行分析。混合纳米流体由富含氧化铜纳米颗粒和多壁碳纳米管的基础流体乙二醇组成。考虑到适当的自由流和壁面边界条件,利用相似变换将支配耦合非线性偏微分方程转换为常微分方程;然后,在 MATLAB 中采用射影法求解所得到的常微分方程。研究了各种参数组合的图形和数值结果。图表说明了 CuO-MWCNTs/ 乙二醇混合纳米流体的数值结果。对这些结果进行了全面讨论,以分析不同热流体参数对 Jeffrey 混合纳米流体的热量、质量和流动特性的影响。表中提供了表皮摩擦、努塞尔特数和舍伍德数,显示了这些参数在不同参数值下的变化。随着杰弗里流体参数的升高,努塞尔特数和表皮摩擦力也随之增大,而舍伍德数则随之减小。相反,随着德博拉数的增加,努塞尔特数和皮肤摩擦力下降,但舍伍德数增加。与已公布结果的对比分析证实了本结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信