{"title":"A general law of the iterated logarithm for non-additive probabilities","authors":"Zhaojun Zong , Miaomiao Gao , Feng Hu","doi":"10.1016/j.rinam.2024.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≔</mo><mfrac><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><mi>ϕ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> under some reasonable assumptions, where <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of random variables and <span><math><mi>ϕ</mi></math></span> is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100475"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000451/pdfft?md5=fc6eb3a1286d72ec3562e2dc6bd8f382&pid=1-s2.0-S2590037424000451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of under some reasonable assumptions, where is a sequence of random variables and is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).