A general law of the iterated logarithm for non-additive probabilities

IF 1.4 Q2 MATHEMATICS, APPLIED
Zhaojun Zong , Miaomiao Gao , Feng Hu
{"title":"A general law of the iterated logarithm for non-additive probabilities","authors":"Zhaojun Zong ,&nbsp;Miaomiao Gao ,&nbsp;Feng Hu","doi":"10.1016/j.rinam.2024.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≔</mo><mfrac><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><mi>ϕ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> under some reasonable assumptions, where <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of random variables and <span><math><mi>ϕ</mi></math></span> is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100475"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000451/pdfft?md5=fc6eb3a1286d72ec3562e2dc6bd8f382&pid=1-s2.0-S2590037424000451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of Vni=1nXinϕ(n) under some reasonable assumptions, where {Xi}i=1 is a sequence of random variables and ϕ is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).

非加法概率的迭代对数一般规律
受数理经济学、量子力学和金融学中一些有趣问题的启发,非相加概率被用来描述一般非相加的现象。本文在已有成果的基础上,进一步研究了非加概率的迭代对数定律(LIL)。在彭晓峰提出的亚线性期望框架下,我们给出了 Vn≔∑i=1nXinj(n)在一些合理假设下的两个收敛结果,其中 {Xi}i=1∞ 是一个随机变量序列,j 是一个正的非递减函数。由此,对于负相关和非同分布的随机变量,证明了非相加概率的一般 LIL。事实证明,我们的结果是柯尔莫哥洛夫 LIL 和哈特曼-温特纳 LIL 的自然扩展。本文的定理 1 和定理 2 可以看作是 Chen 和 Hu(2014)中定理 1 的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信