Managing Linux servers with LLM-based AI agents: An empirical evaluation with GPT4

Charles Cao , Feiyi Wang , Lisa Lindley , Zejiang Wang
{"title":"Managing Linux servers with LLM-based AI agents: An empirical evaluation with GPT4","authors":"Charles Cao ,&nbsp;Feiyi Wang ,&nbsp;Lisa Lindley ,&nbsp;Zejiang Wang","doi":"10.1016/j.mlwa.2024.100570","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an empirical study on the application of Large Language Model (LLM)-based AI agents for automating server management tasks in Linux environments. We aim to evaluate the effectiveness, efficiency, and adaptability of LLM-based AI agents in handling a wide range of server management tasks, and to identify the potential benefits and challenges of employing such agents in real-world scenarios. We present an empirical study where a GPT-based AI agent autonomously executes 150 unique tasks across 9 categories, ranging from file management to editing to program compilations. The agent operates in a Dockerized Linux sandbox, interpreting task descriptions and generating appropriate commands or scripts. Our findings reveal the agent’s proficiency in executing tasks autonomously and adapting to feedback, demonstrating the potential of LLMs in simplifying complex server management for users with varying technical expertise. This study contributes to the understanding of LLM applications in server management scenarios, and paves the foundation for future research in this domain.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100570"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266682702400046X/pdfft?md5=c84038ecf9feef782cbf788c56d506da&pid=1-s2.0-S266682702400046X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682702400046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an empirical study on the application of Large Language Model (LLM)-based AI agents for automating server management tasks in Linux environments. We aim to evaluate the effectiveness, efficiency, and adaptability of LLM-based AI agents in handling a wide range of server management tasks, and to identify the potential benefits and challenges of employing such agents in real-world scenarios. We present an empirical study where a GPT-based AI agent autonomously executes 150 unique tasks across 9 categories, ranging from file management to editing to program compilations. The agent operates in a Dockerized Linux sandbox, interpreting task descriptions and generating appropriate commands or scripts. Our findings reveal the agent’s proficiency in executing tasks autonomously and adapting to feedback, demonstrating the potential of LLMs in simplifying complex server management for users with varying technical expertise. This study contributes to the understanding of LLM applications in server management scenarios, and paves the foundation for future research in this domain.

使用基于 LLM 的人工智能代理管理 Linux 服务器:使用 GPT4 进行实证评估
本文介绍了一项关于基于大语言模型(LLM)的人工智能代理在 Linux 环境中自动执行服务器管理任务的应用实证研究。我们旨在评估基于 LLM 的人工智能代理在处理各种服务器管理任务时的有效性、效率和适应性,并确定在实际场景中使用此类代理的潜在优势和挑战。我们介绍了一项实证研究,在这项研究中,基于 GPT 的人工智能代理自主执行了从文件管理、编辑到程序编译等 9 个类别的 150 项独特任务。该代理在 Docker 化的 Linux 沙箱中运行,解释任务描述并生成适当的命令或脚本。我们的研究结果表明,该代理能够熟练地自主执行任务并适应反馈,这证明了 LLM 在为具有不同技术专长的用户简化复杂服务器管理方面的潜力。这项研究有助于人们了解 LLM 在服务器管理场景中的应用,并为该领域的未来研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信