Comparative analysis of time series neural network methods for three-way catalyst modeling

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhuoxiao Yao, Tao Chen, Weipeng Lin, Yifang Feng, Zengchun Wei
{"title":"Comparative analysis of time series neural network methods for three-way catalyst modeling","authors":"Zhuoxiao Yao,&nbsp;Tao Chen,&nbsp;Weipeng Lin,&nbsp;Yifang Feng,&nbsp;Zengchun Wei","doi":"10.1016/j.egyai.2024.100394","DOIUrl":null,"url":null,"abstract":"<div><p>Relative Oxygen Level of the Three-Way Catalyst is an important parameter that affects the conversion efficiency of pollutants. ROL is a time-varying hidden state variable that is difficult to directly observe in practice. Therefore, it is common to use a method of clearing oxygen storage to simplify control in vehicles. However, this method negates the positive effects of ROL on pollutant treatment. ROL can be indirectly observed through modeling methods. Chemical modeling methods involve extensive computational requirements that cannot meet the demands of practical control. In contrast, time-series neural networks offer computational speed advantages when dealing with similar problems. Therefore, the ROL observation models using both NARX and LSTM neural networks are developed and compared in this study. The results indicate that the NARX neural network exhibits higher precision with a smaller number of neurons and time steps. The LSTM neural network demonstrates greater stability when dealing with data error fluctuations. In practical applications, the ROL model can monitor the TWC operating status and assist in the development of intelligent pollutant aftertreatment control strategies.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"17 ","pages":"Article 100394"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000600/pdfft?md5=e0f28356e08298507b446cd855bbbd46&pid=1-s2.0-S2666546824000600-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Relative Oxygen Level of the Three-Way Catalyst is an important parameter that affects the conversion efficiency of pollutants. ROL is a time-varying hidden state variable that is difficult to directly observe in practice. Therefore, it is common to use a method of clearing oxygen storage to simplify control in vehicles. However, this method negates the positive effects of ROL on pollutant treatment. ROL can be indirectly observed through modeling methods. Chemical modeling methods involve extensive computational requirements that cannot meet the demands of practical control. In contrast, time-series neural networks offer computational speed advantages when dealing with similar problems. Therefore, the ROL observation models using both NARX and LSTM neural networks are developed and compared in this study. The results indicate that the NARX neural network exhibits higher precision with a smaller number of neurons and time steps. The LSTM neural network demonstrates greater stability when dealing with data error fluctuations. In practical applications, the ROL model can monitor the TWC operating status and assist in the development of intelligent pollutant aftertreatment control strategies.

Abstract Image

用于三元催化剂建模的时间序列神经网络方法比较分析
三效催化剂的相对氧含量是影响污染物转化效率的一个重要参数。ROL 是一个时变的隐藏状态变量,在实际应用中很难直接观测到。因此,通常采用清除氧气存储的方法来简化车辆控制。然而,这种方法会抵消 ROL 对污染物处理的积极作用。可以通过建模方法间接观察 ROL。化学建模方法需要大量计算,无法满足实际控制的要求。相比之下,时间序列神经网络在处理类似问题时具有计算速度快的优势。因此,本研究利用 NARX 和 LSTM 神经网络建立了 ROL 观察模型,并进行了比较。结果表明,NARX 神经网络在神经元数量和时间步数较少的情况下,表现出更高的精度。LSTM 神经网络在处理数据误差波动时表现出更高的稳定性。在实际应用中,ROL 模型可以监测 TWC 的运行状态,并协助制定智能污染物后处理控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信