On Some families of Path-related graphs with their edge metric dimension

Lianglin Li, Shu Bao, Hassan Raza
{"title":"On Some families of Path-related graphs with their edge metric dimension","authors":"Lianglin Li,&nbsp;Shu Bao,&nbsp;Hassan Raza","doi":"10.1016/j.exco.2024.100152","DOIUrl":null,"url":null,"abstract":"<div><p>Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> is known as an edge metric generator for <span><math><mi>G</mi></math></span> if, for any two distinct edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>a</mi><mo>⊆</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for <span><math><mi>G</mi></math></span>, and the number of vertices in such a basis is called the edge metric dimension, denoted by <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator with the fewest vertices is called an edge metric basis for <span><math><mi>G</mi></math></span>. The number of vertices in such a basis is the edge metric dimension, represented as <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path <span><math><mrow><mi>M</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the splitting graph of path <span><math><mrow><mi>S</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000181/pdfft?md5=c2a7ee3861dc78370607917771d98ef6&pid=1-s2.0-S2666657X24000181-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset LEVG is known as an edge metric generator for G if, for any two distinct edges e1,e2E, there exists a vertex aLE such that d(e1,a)d(e2,a). An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for G, and the number of vertices in such a basis is called the edge metric dimension, denoted by dime(G). An edge metric generator with the fewest vertices is called an edge metric basis for G. The number of vertices in such a basis is the edge metric dimension, represented as dime(G). In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path M(Pn) and the splitting graph of path S(Pn).

论路径相关图的一些族及其边缘度量维度
确定复杂网络中的扩散源是一项有趣但极具挑战性的任务。它对于预测和限制流行病风险至关重要。在许多可行的模型中都考虑了源定位问题。本文研究了一些路径相关图中的定位问题,并对边缘度量维度进行了研究。如果对于任意两条不同的边 e1、e2∈E,存在一个顶点 a⊆LE,使得 d(e1,a)≠d(e2,a),则子集 LE⊆VG 称为 G 的边度量生成器。包含最少顶点数的边缘度量生成器称为 G 的边缘度量基,这样的基中的顶点数称为边缘度量维度,用 dime(G) 表示。顶点数量最少的边度量生成器称为 G 的边度量基,这样的基中的顶点数量就是边度量维度,用 dime(G) 表示。本文将计算一些路径相关图的边度量维度,即路径 M(Pn) 的中间图和路径 S(Pn) 的分割图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信