Dunqian Deng , Shengyu Hu , Ziqi Lin , Jiayin Geng , Ziang Qian , Kai Zhang , Xianhui Ning , Yongxu Cheng , Cong Zhang , Shaowu Yin
{"title":"High temperature aggravated hypoxia-induced intestine toxicity on juvenile Chinese mitten crab (Eriocheir sinensis)","authors":"Dunqian Deng , Shengyu Hu , Ziqi Lin , Jiayin Geng , Ziang Qian , Kai Zhang , Xianhui Ning , Yongxu Cheng , Cong Zhang , Shaowu Yin","doi":"10.1016/j.cbd.2024.101288","DOIUrl":null,"url":null,"abstract":"<div><p>High temperature and hypoxia in water due to global warming threaten the growth and development of aquatic animals. In natural or cultured environments, stress usually does not occur independently, whereas the synergistic effect of high temperature and hypoxia on Chinese mitten crab (<em>Eriocheir sinensis</em>) are rarely reported. In this study, 450 juvenile crabs were equally divided into control group (24 °C ± 0.5 °C, DO 6.8 ± 0.1 mg/L), hypoxia stress group (24 °C ± 0.5 °C, DO 1 ± 0.1 mg/L) and combined stress group (30 °C ± 0.5 °C, DO 1 ± 0.1 mg/L), and the intestinal health status, microbial diversity and metabolite profiles were evaluated for 24 h treatment. The results showed that hypoxia stress induced the expression level of pro-inflammatory related genes were significantly up-regulated in intestine of juvenile <em>E. sinensis</em>, and intestinal peritrophic membrane factor related genes were significantly down-regulated. High temperature further amplified the effects of hypoxia on pro-inflammatory and peritrophic membrane factor-related genes. Interesting, hypoxia stress induced a significant up-regulated of intestinal antioxidant-related genes, whereas high temperature reversed this trend. In addition, single stress or/and combined stress led to changes in intestinal microbiota diversity and abundance, and intestinal metabolite profiles. Compared with hypoxia stress, the synergistic effect of high temperature and hypoxia led to an increase in the abundance of pathogenic bacteria and a decrease in the abundance of probiotic bacteria. Moreover, intestinal metabolic pathways were significantly changed, especially amino acid metabolism and glycerophospholipid metabolism. Therefore, the results indicated that hypoxia stress could induce intestinal inflammatory response and oxidative stress, and lead to abnormal changes in intestinal microbiota and metabolic profiles, whereas high temperature further aggravate the toxic effects of hypoxia on the intestine. This study preliminarily revealed the synergistic toxic effects of high temperature and hypoxia on the intestine of juvenile <em>E. sinensis</em>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature and hypoxia in water due to global warming threaten the growth and development of aquatic animals. In natural or cultured environments, stress usually does not occur independently, whereas the synergistic effect of high temperature and hypoxia on Chinese mitten crab (Eriocheir sinensis) are rarely reported. In this study, 450 juvenile crabs were equally divided into control group (24 °C ± 0.5 °C, DO 6.8 ± 0.1 mg/L), hypoxia stress group (24 °C ± 0.5 °C, DO 1 ± 0.1 mg/L) and combined stress group (30 °C ± 0.5 °C, DO 1 ± 0.1 mg/L), and the intestinal health status, microbial diversity and metabolite profiles were evaluated for 24 h treatment. The results showed that hypoxia stress induced the expression level of pro-inflammatory related genes were significantly up-regulated in intestine of juvenile E. sinensis, and intestinal peritrophic membrane factor related genes were significantly down-regulated. High temperature further amplified the effects of hypoxia on pro-inflammatory and peritrophic membrane factor-related genes. Interesting, hypoxia stress induced a significant up-regulated of intestinal antioxidant-related genes, whereas high temperature reversed this trend. In addition, single stress or/and combined stress led to changes in intestinal microbiota diversity and abundance, and intestinal metabolite profiles. Compared with hypoxia stress, the synergistic effect of high temperature and hypoxia led to an increase in the abundance of pathogenic bacteria and a decrease in the abundance of probiotic bacteria. Moreover, intestinal metabolic pathways were significantly changed, especially amino acid metabolism and glycerophospholipid metabolism. Therefore, the results indicated that hypoxia stress could induce intestinal inflammatory response and oxidative stress, and lead to abnormal changes in intestinal microbiota and metabolic profiles, whereas high temperature further aggravate the toxic effects of hypoxia on the intestine. This study preliminarily revealed the synergistic toxic effects of high temperature and hypoxia on the intestine of juvenile E. sinensis.