Virtual node graph neural network for full phonon prediction

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ryotaro Okabe, Abhijatmedhi Chotrattanapituk, Artittaya Boonkird, Nina Andrejevic, Xiang Fu, Tommi S. Jaakkola, Qichen Song, Thanh Nguyen, Nathan Drucker, Sai Mu, Yao Wang, Bolin Liao, Yongqiang Cheng, Mingda Li
{"title":"Virtual node graph neural network for full phonon prediction","authors":"Ryotaro Okabe, Abhijatmedhi Chotrattanapituk, Artittaya Boonkird, Nina Andrejevic, Xiang Fu, Tommi S. Jaakkola, Qichen Song, Thanh Nguyen, Nathan Drucker, Sai Mu, Yao Wang, Bolin Liao, Yongqiang Cheng, Mingda Li","doi":"10.1038/s43588-024-00661-0","DOIUrl":null,"url":null,"abstract":"Understanding the structure–property relationship is crucial for designing materials with desired properties. The past few years have witnessed remarkable progress in machine-learning methods for this connection. However, substantial challenges remain, including the generalizability of models and prediction of properties with materials-dependent output dimensions. Here we present the virtual node graph neural network to address the challenges. By developing three virtual node approaches, we achieve Γ-phonon spectra and full phonon dispersion prediction from atomic coordinates. We show that, compared with the machine-learning interatomic potentials, our approach achieves orders-of-magnitude-higher efficiency with comparable to better accuracy. This allows us to generate databases for Γ-phonon containing over 146,000 materials and phonon band structures of zeolites. Our work provides an avenue for rapid and high-quality prediction of phonon band structures enabling materials design with desired phonon properties. The virtual node method also provides a generic method for machine-learning design with a high level of flexibility. In this study, the authors present a virtual node graph neural network to enable the prediction of material properties with variable output dimensions. This method offers fast and accurate predictions of phonon band structures in complex solids.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"522-531"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00661-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the structure–property relationship is crucial for designing materials with desired properties. The past few years have witnessed remarkable progress in machine-learning methods for this connection. However, substantial challenges remain, including the generalizability of models and prediction of properties with materials-dependent output dimensions. Here we present the virtual node graph neural network to address the challenges. By developing three virtual node approaches, we achieve Γ-phonon spectra and full phonon dispersion prediction from atomic coordinates. We show that, compared with the machine-learning interatomic potentials, our approach achieves orders-of-magnitude-higher efficiency with comparable to better accuracy. This allows us to generate databases for Γ-phonon containing over 146,000 materials and phonon band structures of zeolites. Our work provides an avenue for rapid and high-quality prediction of phonon band structures enabling materials design with desired phonon properties. The virtual node method also provides a generic method for machine-learning design with a high level of flexibility. In this study, the authors present a virtual node graph neural network to enable the prediction of material properties with variable output dimensions. This method offers fast and accurate predictions of phonon band structures in complex solids.

Abstract Image

Abstract Image

用于全声子预测的虚拟节点图神经网络。
了解结构与性能之间的关系对于设计具有所需性能的材料至关重要。过去几年中,针对这种关系的机器学习方法取得了显著进展。然而,巨大的挑战依然存在,包括模型的通用性和预测与材料相关的输出维度的属性。在此,我们提出了虚拟节点图神经网络来应对这些挑战。通过开发三种虚拟节点方法,我们根据原子坐标实现了Γ-声子光谱和全声子色散预测。我们的研究表明,与机器学习原子间位势相比,我们的方法具有更高的效率和精度。这使我们能够生成包含超过 146,000 种材料和沸石声子带结构的Γ-声子数据库。我们的工作为快速、高质量地预测声子能带结构提供了途径,从而使材料设计具有所需的声子特性。虚拟节点方法还为机器学习设计提供了一种具有高度灵活性的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信