On bi-objective combinatorial optimization with heterogeneous objectives

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
{"title":"On bi-objective combinatorial optimization with heterogeneous objectives","authors":"","doi":"10.1016/j.ejor.2024.06.029","DOIUrl":null,"url":null,"abstract":"<div><p>The heterogeneity among objectives in multi-objective optimization can be viewed from several perspectives. In this paper, we are interested in the heterogeneity arising in the underlying landscape of the objective functions, in terms of multi-modality and search difficulty. Building on recent efforts leveraging the so-called single-objective NK-landscapes to model such a setting, we conduct a three-fold empirical analysis on the impact of objective heterogeneity on the landscape properties and search difficulty of bi-objective optimization problems. Firstly, for small problems, we propose two techniques based on studying the distribution of the solutions in the objective space. Secondly, for large problems, we investigate the ability of existing landscape features to capture the degree of heterogeneity among the two objectives. Thirdly, we study the behavior of two state-of-the-art multi-objective evolutionary algorithms, namely MOEA/D and NSGA-II, when faced with a range of problems with different degrees of heterogeneity. Although one algorithm is found to consistently outperform the other, the dynamics of both algorithms vary similarly with respect to objective heterogeneity. Our analysis suggests that novel approaches are needed to understand the fundamental properties of heterogeneous bi-objective optimization problems and to tackle them more effectively.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724004776","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The heterogeneity among objectives in multi-objective optimization can be viewed from several perspectives. In this paper, we are interested in the heterogeneity arising in the underlying landscape of the objective functions, in terms of multi-modality and search difficulty. Building on recent efforts leveraging the so-called single-objective NK-landscapes to model such a setting, we conduct a three-fold empirical analysis on the impact of objective heterogeneity on the landscape properties and search difficulty of bi-objective optimization problems. Firstly, for small problems, we propose two techniques based on studying the distribution of the solutions in the objective space. Secondly, for large problems, we investigate the ability of existing landscape features to capture the degree of heterogeneity among the two objectives. Thirdly, we study the behavior of two state-of-the-art multi-objective evolutionary algorithms, namely MOEA/D and NSGA-II, when faced with a range of problems with different degrees of heterogeneity. Although one algorithm is found to consistently outperform the other, the dynamics of both algorithms vary similarly with respect to objective heterogeneity. Our analysis suggests that novel approaches are needed to understand the fundamental properties of heterogeneous bi-objective optimization problems and to tackle them more effectively.

关于具有异质目标的双目标组合优化
多目标优化中目标之间的异质性可以从多个角度来看待。在本文中,我们关注的是目标函数底层景观在多模式和搜索难度方面产生的异质性。最近,我们利用所谓的单目标 NK 景观来模拟这种情况,在此基础上,我们从三个方面对目标异质性对双目标优化问题的景观属性和搜索难度的影响进行了实证分析。首先,对于小问题,我们提出了两种基于研究目标空间解分布的技术。其次,对于大型问题,我们研究了现有景观特征捕捉两个目标之间异质性程度的能力。第三,我们研究了两种最先进的多目标进化算法(即 MOEA/D 和 NSGA-II)在面对一系列具有不同异质性的问题时的表现。虽然其中一种算法的性能始终优于另一种算法,但这两种算法的动态变化与目标异质性的变化类似。我们的分析表明,需要采用新方法来理解异构双目标优化问题的基本特性,并更有效地解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信