On Pisier Type Theorems

IF 1 2区 数学 Q1 MATHEMATICS
Jaroslav Nešetřil, Vojtěch Rödl, Marcelo Sales
{"title":"On Pisier Type Theorems","authors":"Jaroslav Nešetřil, Vojtěch Rödl, Marcelo Sales","doi":"10.1007/s00493-024-00115-1","DOIUrl":null,"url":null,"abstract":"<p>For any integer <span>\\(h\\geqslant 2\\)</span>, a set of integers <span>\\(B=\\{b_i\\}_{i\\in I}\\)</span> is a <span>\\(B_h\\)</span>-set if all <i>h</i>-sums <span>\\(b_{i_1}+\\ldots +b_{i_h}\\)</span> with <span>\\(i_1&lt;\\ldots &lt;i_h\\)</span> are distinct. Answering a question of Alon and Erdős [2], for every <span>\\(h\\geqslant 2\\)</span> we construct a set of integers <i>X</i> which is not a union of finitely many <span>\\(B_h\\)</span>-sets, yet any finite subset <span>\\(Y\\subseteq X\\)</span> contains an <span>\\(B_h\\)</span>-set <i>Z</i> with <span>\\(|Z|\\geqslant \\varepsilon |Y|\\)</span>, where <span>\\(\\varepsilon :=\\varepsilon (h)\\)</span>. We also discuss questions related to a problem of Pisier about the existence of a set <i>A</i> with similar properties when replacing <span>\\(B_h\\)</span>-sets by the requirement that all finite sums <span>\\(\\sum _{j\\in J}b_j\\)</span> are distinct.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00115-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any integer \(h\geqslant 2\), a set of integers \(B=\{b_i\}_{i\in I}\) is a \(B_h\)-set if all h-sums \(b_{i_1}+\ldots +b_{i_h}\) with \(i_1<\ldots <i_h\) are distinct. Answering a question of Alon and Erdős [2], for every \(h\geqslant 2\) we construct a set of integers X which is not a union of finitely many \(B_h\)-sets, yet any finite subset \(Y\subseteq X\) contains an \(B_h\)-set Z with \(|Z|\geqslant \varepsilon |Y|\), where \(\varepsilon :=\varepsilon (h)\). We also discuss questions related to a problem of Pisier about the existence of a set A with similar properties when replacing \(B_h\)-sets by the requirement that all finite sums \(\sum _{j\in J}b_j\) are distinct.

Abstract Image

论皮西埃类型定理
对于任意整数 \(h\geqslant 2\), 如果所有与 \(i_1<\ldots <i_h\) 的 h-sums \(b_{i_1}+\ldots +b_{i_h})都是不同的,那么整数集合 \(B=\{b_i\}_{i\in I}\) 就是一个 \(B_h\)-set 。为了回答阿隆和厄尔多斯的一个问题[2],对于每一个 \(h\geqslant 2\) 我们都要构造一个整数集合 X,这个集合不是有限多个 \(B_h\)-set 的联合,然而任何有限子集 \(Y\subseteq X\) 都包含一个 \(B_h\)-set Z,其中 \(|Z|geqslant \varepsilon |Y/|),这里 \(\varepsilon :=\varepsilon (h)\).我们还讨论了与皮西埃的一个问题有关的问题,即当所有有限和 \(\sum _{j\in J}b_j\) 都是不同的要求取代 \(B_h\)-set 时,是否存在一个具有类似性质的集合 A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信