{"title":"Unavoidable Flats in Matroids Representable over Prime Fields","authors":"Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00493-024-00112-4","DOIUrl":null,"url":null,"abstract":"<p>We show that, for any prime <i>p</i> and integer <span>\\(k \\ge 2\\)</span>, a simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank has a rank-<i>k</i> flat which is either independent in <i>M</i>, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroids. For any prime <i>p</i> and integer <span>\\(k\\ge 2\\)</span>, if we 2-colour the elements in any simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank <i>k</i>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00112-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that, for any prime p and integer \(k \ge 2\), a simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank has a rank-k flat which is either independent in M, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for \({{\,\textrm{GF}\,}}(p)\)-representable matroids. For any prime p and integer \(k\ge 2\), if we 2-colour the elements in any simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank k.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.