Flocking by Turning Away

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Suchismita Das, Matteo Ciarchi, Ziqi Zhou, Jing Yan, Jie Zhang, Ricard Alert
{"title":"Flocking by Turning Away","authors":"Suchismita Das, Matteo Ciarchi, Ziqi Zhou, Jing Yan, Jie Zhang, Ricard Alert","doi":"10.1103/physrevx.14.031008","DOIUrl":null,"url":null,"abstract":"Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-induced phase separation of active particles, here it combines with turn-away torques to produce flocking. Therefore, our findings bridge the classes of aligning and nonaligning active matter. Our results could help to reconcile the observations that cells can flock despite turning away from each other via contact inhibition of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when the orientational interactions would seem to prevent it.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031008","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-induced phase separation of active particles, here it combines with turn-away torques to produce flocking. Therefore, our findings bridge the classes of aligning and nonaligning active matter. Our results could help to reconcile the observations that cells can flock despite turning away from each other via contact inhibition of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when the orientational interactions would seem to prevent it.

Abstract Image

转过身去
成群结队,以鸟类为典型代表,是活跃分子的连贯集体运动。按照最初的设想,鸟群是通过活动物之间的排列互动而出现的。在这里,我们报告说,鸟群也可以通过相互作用使鸟类彼此远离而出现。结合模拟、动力学理论和实验,我们证明了这种在前方斥力大于后方斥力的自推进 Janus 胶体中的成群机制。极性状态之所以稳定,是因为粒子在远离左邻右舍之间实现了折衷。与排列相互作用不同的是,从转离相互作用中产生极性秩序需要粒子的斥力。在高浓度下,斥力会产生成群的维格纳晶体。斥力通常会导致运动诱导的活性粒子相分离,而在这里,斥力与转离力矩相结合,产生了成群结队的现象。因此,我们的发现弥合了对齐和非对齐活性物质的类别。我们的研究结果有助于解释细胞通过运动的接触抑制,在相互远离的情况下仍能成群结队的现象。总之,我们的工作表明,成群是一种非常强大的现象,即使在定向相互作用似乎会阻止成群的情况下也会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信