Wearing sensor data integration for promoting the performance skills of music in IoT

IF 0.9 Q4 TELECOMMUNICATIONS
Xiaochan Li, Yi Shi, Daohua Pan
{"title":"Wearing sensor data integration for promoting the performance skills of music in IoT","authors":"Xiaochan Li,&nbsp;Yi Shi,&nbsp;Daohua Pan","doi":"10.1002/itl2.517","DOIUrl":null,"url":null,"abstract":"<p>This study integrates multi-node wearable sensor data to improve music performance skills. A window-adding method is used during time-frequency feature extraction. By incorporating kernel functions, we present a generalized discriminant analysis (GDA) method to reduce the high-dimensional sensor features while retaining performance traits. Experiments demonstrate that the proposed GDA approach achieves higher accuracy (92.71%), precision (90.54%), and recall (88.68%) compared to linear discriminant analysis (82.39% accuracy) and principal component analysis (88.56% accuracy) in classifying motions performed by music performers. The integrated analysis of wearable sensor data facilitates comprehensive feedback to strengthen proficiency across various music performance skills.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study integrates multi-node wearable sensor data to improve music performance skills. A window-adding method is used during time-frequency feature extraction. By incorporating kernel functions, we present a generalized discriminant analysis (GDA) method to reduce the high-dimensional sensor features while retaining performance traits. Experiments demonstrate that the proposed GDA approach achieves higher accuracy (92.71%), precision (90.54%), and recall (88.68%) compared to linear discriminant analysis (82.39% accuracy) and principal component analysis (88.56% accuracy) in classifying motions performed by music performers. The integrated analysis of wearable sensor data facilitates comprehensive feedback to strengthen proficiency across various music performance skills.

整合穿戴式传感器数据,提升物联网音乐表演技能
本研究整合了多节点可穿戴传感器数据,以提高音乐表演技能。在时频特征提取过程中使用了加窗方法。通过结合核函数,我们提出了一种广义判别分析(GDA)方法,以减少高维传感器特征,同时保留性能特征。实验证明,与线性判别分析(准确率为 82.39%)和主成分分析(准确率为 88.56%)相比,在对音乐表演者的动作进行分类时,所提出的 GDA 方法实现了更高的准确率(92.71%)、精确率(90.54%)和召回率(88.68%)。对可穿戴传感器数据的综合分析有助于提供全面的反馈,从而提高各种音乐表演技能的熟练程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信