Xinyang Wen, Zhuoxuan Liu, Yanbo Chu, Min Le, Liang Li
{"title":"MRCM-UCTransNet: Automatic and Accurate 3D Tooth Segmentation Network From Cone-Beam CT Images","authors":"Xinyang Wen, Zhuoxuan Liu, Yanbo Chu, Min Le, Liang Li","doi":"10.1002/ima.23139","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Many scenarios in dental clinical diagnosis and treatment require the segmentation and identification of a specific tooth or the entire dentition in cone-beam computed tomography (CBCT) images. However, traditional segmentation methods struggle to ensure accuracy. In recent years, there has been significant progress in segmentation algorithms based on deep learning, garnering considerable attention. Inspired by models from present neuro networks such as UCTransNet and DC-Unet, this study proposes an MRCM-UCTransNet for accurate three-dimensional tooth segmentation from cone-beam CT images. To enhance feature extraction while preserving the multi-head attention mechanism, a multi-scale residual convolution module (MRCM) is integrated into the UCTransNet architecture. This modification addresses the limitations of traditional segmentation methods and aims to improve accuracy in tooth segmentation from CBCT images. Comparative experiments indicate that, in the situation with a specific image size and small data volume, the proposed method exhibits certain advantages in segmentation accuracy and precision. Compared to traditional Unet approaches, MRCM-UCTransNet's dice accuracy is improved by 7%, while its sensitivity is improved by about 10%. These findings highlight the efficacy of the proposed approach, particularly in scenarios with specific image size constraints and limited data availability. The proposed MRCM-UCTransNet algorithm integrates the latest architectural advancements in the Unet model which achieves effective segmentation of six types of teeth within the tooth. It was proved to be efficient for image segmentation on small datasets, requiring less training time and fewer parameters.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23139","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Many scenarios in dental clinical diagnosis and treatment require the segmentation and identification of a specific tooth or the entire dentition in cone-beam computed tomography (CBCT) images. However, traditional segmentation methods struggle to ensure accuracy. In recent years, there has been significant progress in segmentation algorithms based on deep learning, garnering considerable attention. Inspired by models from present neuro networks such as UCTransNet and DC-Unet, this study proposes an MRCM-UCTransNet for accurate three-dimensional tooth segmentation from cone-beam CT images. To enhance feature extraction while preserving the multi-head attention mechanism, a multi-scale residual convolution module (MRCM) is integrated into the UCTransNet architecture. This modification addresses the limitations of traditional segmentation methods and aims to improve accuracy in tooth segmentation from CBCT images. Comparative experiments indicate that, in the situation with a specific image size and small data volume, the proposed method exhibits certain advantages in segmentation accuracy and precision. Compared to traditional Unet approaches, MRCM-UCTransNet's dice accuracy is improved by 7%, while its sensitivity is improved by about 10%. These findings highlight the efficacy of the proposed approach, particularly in scenarios with specific image size constraints and limited data availability. The proposed MRCM-UCTransNet algorithm integrates the latest architectural advancements in the Unet model which achieves effective segmentation of six types of teeth within the tooth. It was proved to be efficient for image segmentation on small datasets, requiring less training time and fewer parameters.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.