Semi-automated mangrove mapping at National-Scale using Sentinel-2, Sentinel-1, and SRTM data with Google Earth Engine: A case study in Thailand

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Surachet Pinkeaw , Pawita Boonrat , Werapong Koedsin , Alfredo Huete
{"title":"Semi-automated mangrove mapping at National-Scale using Sentinel-2, Sentinel-1, and SRTM data with Google Earth Engine: A case study in Thailand","authors":"Surachet Pinkeaw ,&nbsp;Pawita Boonrat ,&nbsp;Werapong Koedsin ,&nbsp;Alfredo Huete","doi":"10.1016/j.ejrs.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mangroves are a crucial part of the coastal ecosystem; thus, precise and up-to-date monitoring is essential to guide regional policies and inform conservation strategies. This study investigates the capabilities of semi-automated remote sensing approaches within a Google Earth Engine framework for national-scale mangrove mapping in Thailand. Remote sensing data from 2018—10,000 data points acquired from Sentinel-1, Sentinel-2, and the Shuttle Radar Topography Mission (SRTM)—was used to train several machine learning models. The Gradient Tree Boost (GTB) proved to be the most reliable, with the least variation in validity (the lowest IQR) and the highest average Overall Accuracy of 96.75 ± 0.63 % compared to the others—96.64 ± 0.72 % for Random Forest (RF); 96.12 ± 0.80 %for Classification and Regression Trees (CART); and 95.43 ± 0.74 % for Support Vector Machines (SVM). Thus, the GTB was instrumental in mapping mangrove distribution with 10-m spatial resolution across Thailand from 2016 to 2022, the period in which the mangrove areas increased by 11 %, reflecting successful conservation efforts over the past decade. The developed framework establishes the foundation for semi-automated mangrove mapping that can be developed for other geographical contexts.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S111098232400053X/pdfft?md5=bdd650004ec791bfac1bc83b674714e2&pid=1-s2.0-S111098232400053X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111098232400053X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mangroves are a crucial part of the coastal ecosystem; thus, precise and up-to-date monitoring is essential to guide regional policies and inform conservation strategies. This study investigates the capabilities of semi-automated remote sensing approaches within a Google Earth Engine framework for national-scale mangrove mapping in Thailand. Remote sensing data from 2018—10,000 data points acquired from Sentinel-1, Sentinel-2, and the Shuttle Radar Topography Mission (SRTM)—was used to train several machine learning models. The Gradient Tree Boost (GTB) proved to be the most reliable, with the least variation in validity (the lowest IQR) and the highest average Overall Accuracy of 96.75 ± 0.63 % compared to the others—96.64 ± 0.72 % for Random Forest (RF); 96.12 ± 0.80 %for Classification and Regression Trees (CART); and 95.43 ± 0.74 % for Support Vector Machines (SVM). Thus, the GTB was instrumental in mapping mangrove distribution with 10-m spatial resolution across Thailand from 2016 to 2022, the period in which the mangrove areas increased by 11 %, reflecting successful conservation efforts over the past decade. The developed framework establishes the foundation for semi-automated mangrove mapping that can be developed for other geographical contexts.

利用 Sentinel-2、Sentinel-1 和 SRTM 数据以及谷歌地球引擎进行国家级半自动化红树林测绘:泰国案例研究
红树林是沿海生态系统的重要组成部分;因此,精确的最新监测对于指导地区政策和为保护战略提供信息至关重要。本研究调查了半自动遥感方法在谷歌地球引擎框架内绘制泰国国家级红树林地图的能力。从哨兵-1、哨兵-2 和航天飞机雷达地形任务(SRTM)获取的 2018 年 10,000 个数据点的遥感数据被用于训练多个机器学习模型。事实证明,梯度树提升(GTB)是最可靠的,其有效性变化最小(IQR 最低),平均总体准确率最高(96.75 ± 0.63 %),而其他模型的平均总体准确率分别为:随机森林(RF)96.64 ± 0.72 %;分类和回归树(CART)96.12 ± 0.80 %;支持向量机(SVM)95.43 ± 0.74 %。因此,GTB 在绘制 2016 年至 2022 年泰国境内 10 米空间分辨率的红树林分布图方面发挥了重要作用,在此期间,红树林面积增加了 11%,反映了过去十年中成功的保护工作。所开发的框架为半自动化红树林测绘奠定了基础,可用于其他地理环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信