Pinar Eneren, Arthur Vangeffelen, Yunus Tansu Aksoy, Maria Rosaria Vetrano
{"title":"Flow periodicity in microchannels with fin arrays: Experimental validation","authors":"Pinar Eneren, Arthur Vangeffelen, Yunus Tansu Aksoy, Maria Rosaria Vetrano","doi":"10.1016/j.expthermflusci.2024.111261","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation of the hydrodynamics within microfluidic chips is crucial for cutting-edge integrated liquid cooling systems due to the coupling between the temperature and velocity fields. Therefore, in this experimental work, we examine the spatial periodicity of the laminar velocity fields and pressure drops inside offset strip fin (OSF) and square pin fin (SPF) arrays at Reynolds numbers between 50 and 292 under isothermal conditions. The velocity fields are characterized using the <span><math><mi>μ</mi></math></span>PIV technique, and an advanced image stitching algorithm is applied to obtain the streamwise velocity fields. These stitched velocity fields serve two key purposes: evaluation of the flow development length and validation of the flow periodicity due to the periodic nature of the fin arrays. The velocity measurements are compared to the DNS results, and the friction factors acquired from pressure drop measurements are accurately predicted by the correlations based on the periodic flow assumption owing to the rapid flow development. For the first time, to the authors’ knowledge, the consistent monotonic decay of flow perturbations is experimentally evidenced to occur via a single exponential mode. Finally, based on our validation, we confirm the feasibility of using the unit-cell approach to significantly reduce the computational costs compared to simulations that resolve the entire geometry.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"158 ","pages":"Article 111261"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001304","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigation of the hydrodynamics within microfluidic chips is crucial for cutting-edge integrated liquid cooling systems due to the coupling between the temperature and velocity fields. Therefore, in this experimental work, we examine the spatial periodicity of the laminar velocity fields and pressure drops inside offset strip fin (OSF) and square pin fin (SPF) arrays at Reynolds numbers between 50 and 292 under isothermal conditions. The velocity fields are characterized using the PIV technique, and an advanced image stitching algorithm is applied to obtain the streamwise velocity fields. These stitched velocity fields serve two key purposes: evaluation of the flow development length and validation of the flow periodicity due to the periodic nature of the fin arrays. The velocity measurements are compared to the DNS results, and the friction factors acquired from pressure drop measurements are accurately predicted by the correlations based on the periodic flow assumption owing to the rapid flow development. For the first time, to the authors’ knowledge, the consistent monotonic decay of flow perturbations is experimentally evidenced to occur via a single exponential mode. Finally, based on our validation, we confirm the feasibility of using the unit-cell approach to significantly reduce the computational costs compared to simulations that resolve the entire geometry.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.