Enhancing latent palmprints using frequency domain analysis

Javad Khodadoust , Raúl Monroy , Miguel Angel Medina-Pérez , Octavio Loyola-González , Vutipong Areekul , Worapan Kusakunniran
{"title":"Enhancing latent palmprints using frequency domain analysis","authors":"Javad Khodadoust ,&nbsp;Raúl Monroy ,&nbsp;Miguel Angel Medina-Pérez ,&nbsp;Octavio Loyola-González ,&nbsp;Vutipong Areekul ,&nbsp;Worapan Kusakunniran","doi":"10.1016/j.iswa.2024.200414","DOIUrl":null,"url":null,"abstract":"<div><p>Latent palmprints are integral to crime scene investigations, constituting a significant portion of encountered prints. They often suffer from poor ridge impressions, noise, and pronounced creases, setting them apart from other palmprint types. While progressive enhancement techniques are widely used for fingerprints, palmprints with numerous thick creases and larger sizes benefit more from region-growing techniques. Frequency domain-based palmprint enhancement excels in separating creases from ridges and reshaping ridge structures accurately. The key challenge lies in identifying suitable initial blocks for both region-growing and iterative enhancement techniques. Existing frequency domain-based quality maps, primarily designed for fingerprints, exhibit limited performance when applied to palmprints, especially latent ones. To address these issues, this paper introduces a new approach that combines region-growing and frequency domain-based enhancement techniques to improve latent palmprints. Our method leverages high-quality blocks, employs the orientation field obtained in the frequency domain to correct possible orientation errors in starting blocks, and utilizes varying weights to enhance all block types effectively. The experimental results indicate that the proposed approach surpasses the existing state-of-the-art techniques in terms of recognition accuracy.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200414"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000887/pdfft?md5=91a04ba0885a053f5b14b8e6443fb391&pid=1-s2.0-S2667305324000887-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Latent palmprints are integral to crime scene investigations, constituting a significant portion of encountered prints. They often suffer from poor ridge impressions, noise, and pronounced creases, setting them apart from other palmprint types. While progressive enhancement techniques are widely used for fingerprints, palmprints with numerous thick creases and larger sizes benefit more from region-growing techniques. Frequency domain-based palmprint enhancement excels in separating creases from ridges and reshaping ridge structures accurately. The key challenge lies in identifying suitable initial blocks for both region-growing and iterative enhancement techniques. Existing frequency domain-based quality maps, primarily designed for fingerprints, exhibit limited performance when applied to palmprints, especially latent ones. To address these issues, this paper introduces a new approach that combines region-growing and frequency domain-based enhancement techniques to improve latent palmprints. Our method leverages high-quality blocks, employs the orientation field obtained in the frequency domain to correct possible orientation errors in starting blocks, and utilizes varying weights to enhance all block types effectively. The experimental results indicate that the proposed approach surpasses the existing state-of-the-art techniques in terms of recognition accuracy.

利用频域分析增强潜伏掌纹
潜伏掌纹是犯罪现场调查中不可或缺的一部分,在遇到的指纹中占很大比例。这些指纹通常会出现脊印不清、噪点和明显折痕等问题,使其与其他类型的掌纹不同。渐进式增强技术被广泛应用于指纹,而具有大量厚折痕和较大尺寸的掌纹则更受益于区域增长技术。基于频域的掌纹增强技术在分离折痕和纹脊以及准确重塑纹脊结构方面表现出色。关键的挑战在于为区域生长和迭代增强技术确定合适的初始块。现有的基于频域的质量图主要是为指纹设计的,在应用于掌纹,尤其是潜伏掌纹时表现出有限的性能。为了解决这些问题,本文介绍了一种新方法,该方法结合了区域增长和基于频域的增强技术来改进潜伏掌纹。我们的方法利用高质量的区块,利用频域中获得的方向场来纠正起始区块中可能存在的方向误差,并利用不同的权重来有效增强所有区块类型。实验结果表明,所提出的方法在识别准确率方面超越了现有的先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信