{"title":"Size stable batch mode model updating method","authors":"Zhonghai He , Xuwang Chen , Zhanbo Feng , Xiaofang Zhang","doi":"10.1016/j.vibspec.2024.103717","DOIUrl":null,"url":null,"abstract":"<div><p>In near-infrared spectroscopy analysis, the predictive performance of models may degrade due to variations in the measurement environment and sample properties. Maintenance or updates to the model are essential to uphold prediction accuracy. The state-of-the-art approach for model updates involves labeling new samples and incorporating them into the calibration set. However, this strategy leads to an escalating size of the calibration dataset, and the low ratio of new samples renders the model update process inefficient. To enhance update efficiency, a size-stable updating strategy is presented which involves the simultaneous addition of new samples and removal of old samples. This is achieved by utilizing the new set as a basis for identifying and deleting significantly different old labeled samples. To improve labeling efficiency, a batch mode update is employed. Initially, calibration samples are clustered to yield multiple clusters with comparable sizes to the new update set. Subsequently, differences between multiple old sample clusters and the new set are calculated. The old sample cluster that most different are removed, accompanied by the addition of the new sample set to maintain calibration set size stability. In calculating set similarity, a multi-indices fusion method is employed to ensure accurate judgments. The efficacy of this method is validated through simulated and real data.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"134 ","pages":"Article 103717"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000705","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In near-infrared spectroscopy analysis, the predictive performance of models may degrade due to variations in the measurement environment and sample properties. Maintenance or updates to the model are essential to uphold prediction accuracy. The state-of-the-art approach for model updates involves labeling new samples and incorporating them into the calibration set. However, this strategy leads to an escalating size of the calibration dataset, and the low ratio of new samples renders the model update process inefficient. To enhance update efficiency, a size-stable updating strategy is presented which involves the simultaneous addition of new samples and removal of old samples. This is achieved by utilizing the new set as a basis for identifying and deleting significantly different old labeled samples. To improve labeling efficiency, a batch mode update is employed. Initially, calibration samples are clustered to yield multiple clusters with comparable sizes to the new update set. Subsequently, differences between multiple old sample clusters and the new set are calculated. The old sample cluster that most different are removed, accompanied by the addition of the new sample set to maintain calibration set size stability. In calculating set similarity, a multi-indices fusion method is employed to ensure accurate judgments. The efficacy of this method is validated through simulated and real data.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.