IML-SSOD: Interconnected and multi-layer threshold learning for semi-supervised detection

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bin Ge, Yuyang Li, Huanhuan Liu, Chenxing Xia, Shuaishuai Geng
{"title":"IML-SSOD: Interconnected and multi-layer threshold learning for semi-supervised detection","authors":"Bin Ge,&nbsp;Yuyang Li,&nbsp;Huanhuan Liu,&nbsp;Chenxing Xia,&nbsp;Shuaishuai Geng","doi":"10.1016/j.jvcir.2024.104220","DOIUrl":null,"url":null,"abstract":"<div><p>While semi-supervised anchored detector of the R-CNN series has achieved remarkable success, semi-supervised anchor-free detector lacks the ability to generate high-quality flexible pseudo labels, resulting in serious inconsistencies in SSOD. In order to make the network learn more reliable and consistent label data to solve the problem of information bias, we propose an interconnected and multi-layer threshold learning for semi-supervised object detection (IML-SSOD). The Joint Guided Estimation (JGE) module uses the Core Zone refinement module to improve the position accuracy score of low semantic information, and combines the classification and the centerness score as evaluation criteria to predict stable labels. The multi-layer threshold filtering method selects more potential label samples for the student network ensuring the information used in training. Extensive experiments on MS COCO and PASCAL VOC datasets demonstrated the effectiveness of IML-SSOD. Compared with existing methods, our method on VOC achieved 81.9% <em>AP</em><span><math><msub><mrow></mrow><mrow><mn>50</mn></mrow></msub></math></span> and 57.89% <em>AP</em><span><math><msub><mrow></mrow><mrow><mn>50</mn><mo>:</mo><mn>95</mn></mrow></msub></math></span>, which is highly competitive.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104220"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324001767","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

While semi-supervised anchored detector of the R-CNN series has achieved remarkable success, semi-supervised anchor-free detector lacks the ability to generate high-quality flexible pseudo labels, resulting in serious inconsistencies in SSOD. In order to make the network learn more reliable and consistent label data to solve the problem of information bias, we propose an interconnected and multi-layer threshold learning for semi-supervised object detection (IML-SSOD). The Joint Guided Estimation (JGE) module uses the Core Zone refinement module to improve the position accuracy score of low semantic information, and combines the classification and the centerness score as evaluation criteria to predict stable labels. The multi-layer threshold filtering method selects more potential label samples for the student network ensuring the information used in training. Extensive experiments on MS COCO and PASCAL VOC datasets demonstrated the effectiveness of IML-SSOD. Compared with existing methods, our method on VOC achieved 81.9% AP50 and 57.89% AP50:95, which is highly competitive.

IML-SSOD:用于半监督检测的互联多层阈值学习
虽然 R-CNN 系列的半监督有锚检测器取得了显著的成就,但半监督无锚检测器缺乏生成高质量灵活伪标签的能力,导致 SSOD 存在严重的不一致性。为了让网络学习到更可靠、更一致的标签数据,以解决信息偏差问题,我们提出了一种用于半监督对象检测的互联多层阈值学习(IML-SSOD)。联合引导估计(JGE)模块利用核心区细化模块提高低语义信息的位置准确度得分,并结合分类和中心度得分作为评价标准来预测稳定的标签。多层阈值过滤法为学生网络选择了更多潜在标签样本,确保了训练中使用的信息。在 MS COCO 和 PASCAL VOC 数据集上的大量实验证明了 IML-SSOD 的有效性。与现有方法相比,我们的方法在 VOC 数据集上实现了 81.9% 的 AP50 和 57.89% 的 AP50:95,具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信