TCFormer: Visual Recognition via Token Clustering Transformer

Wang Zeng;Sheng Jin;Lumin Xu;Wentao Liu;Chen Qian;Wanli Ouyang;Ping Luo;Xiaogang Wang
{"title":"TCFormer: Visual Recognition via Token Clustering Transformer","authors":"Wang Zeng;Sheng Jin;Lumin Xu;Wentao Liu;Chen Qian;Wanli Ouyang;Ping Luo;Xiaogang Wang","doi":"10.1109/TPAMI.2024.3425768","DOIUrl":null,"url":null,"abstract":"Transformers are widely used in computer vision areas and have achieved remarkable success. Most state-of-the-art approaches split images into regular grids and represent each grid region with a vision token. However, fixed token distribution disregards the semantic meaning of different image regions, resulting in sub-optimal performance. To address this issue, we propose the Token Clustering Transformer (TCFormer), which generates dynamic vision tokens based on semantic meaning. Our dynamic tokens possess two crucial characteristics: (1) Representing image regions with similar semantic meanings using the same vision token, even if those regions are not adjacent, and (2) concentrating on regions with valuable details and represent them using fine tokens. Through extensive experimentation across various applications, including image classification, human pose estimation, semantic segmentation, and object detection, we demonstrate the effectiveness of our TCFormer.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10594800/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transformers are widely used in computer vision areas and have achieved remarkable success. Most state-of-the-art approaches split images into regular grids and represent each grid region with a vision token. However, fixed token distribution disregards the semantic meaning of different image regions, resulting in sub-optimal performance. To address this issue, we propose the Token Clustering Transformer (TCFormer), which generates dynamic vision tokens based on semantic meaning. Our dynamic tokens possess two crucial characteristics: (1) Representing image regions with similar semantic meanings using the same vision token, even if those regions are not adjacent, and (2) concentrating on regions with valuable details and represent them using fine tokens. Through extensive experimentation across various applications, including image classification, human pose estimation, semantic segmentation, and object detection, we demonstrate the effectiveness of our TCFormer.
TCFormer:通过令牌聚类进行视觉识别变换器
变换器被广泛应用于计算机视觉领域,并取得了显著的成就。大多数最先进的方法都是将图像分割成规则的网格,并用视觉标记来表示每个网格区域。然而,固定的标记分布忽略了不同图像区域的语义,导致性能未达到最佳。为了解决这个问题,我们提出了标记聚类转换器(TCFormer),它能根据语义生成动态视觉标记。我们的动态标记具有两个关键特征:(1) 使用相同的视觉标记来表示具有相似语义的图像区域,即使这些区域并不相邻;(2) 专注于具有有价值细节的区域,并使用精细标记来表示它们。通过对图像分类、人体姿态估计、语义分割和物体检测等各种应用的广泛实验,我们证明了 TCFormer 的有效性。这项工作的代码和模型可在 https://github.com/zengwang430521/TCFormer 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信