Min-Soo Kim, Dagmar M Hajducek, James C Gilbert, Alfonso Iorio, Bernd Jilma, Andrea N Edginton
{"title":"Kinetic Modeling for BT200 to Predict the Level of Plasma-Derived Coagulation Factor VIII in Humans.","authors":"Min-Soo Kim, Dagmar M Hajducek, James C Gilbert, Alfonso Iorio, Bernd Jilma, Andrea N Edginton","doi":"10.1208/s12248-024-00952-4","DOIUrl":null,"url":null,"abstract":"<p><p>Lack of Factor VIII (FVIII) concentrates is one of limiting factors for Hemophilia A prophylaxis in resource-limited countries. Rondaptivon pegol (BT200) is a pegylated aptamer and has been shown to elevate the level of von Willebrand Factor (VWF) and FVIII in previous studies. A population pharmacokinetic model for BT200 was built and linked to the kinetic models of VWF and FVIII based on reasonable assumptions. The developed PK/PD model for BT200 described the observed kinetic of BT200, VWF, and FVIII in healthy volunteers and patients with mild-to-moderate hemophilia A from two clinical trials. The developed model was evaluated using an external dataset in patients with severe hemophilia A taking recombinant FVIII products. The developed and evaluated PK/PD model was able to describe and predict concentration-time profiles of BT200, VWF, and FVIII in healthy volunteers and patients with hemophilia A. Concentration-time profiles of FVIII were then predicted following coadministration of plasma-derived FVIII concentrate and BT200 under various dosing scenarios in virtual patients with severe hemophilia A. Plasma-derived products, that contain VWF, are more accessible in low-resource countries as compared to their recombinant counterparts. The predicted time above 1 and 3 IU/dL FVIII in one week was compared between scenarios in the absence and presence of BT200. A combination dose of 6 mg BT200 once weekly plus 10 IU/kg plasma-derived FVIII twice weekly maintained similar coverage to a 30 IU/kg FVIII thrice weekly dose in absence of BT200, representing only 22% of the FVIII dose per week.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"26 4","pages":"81"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00952-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Lack of Factor VIII (FVIII) concentrates is one of limiting factors for Hemophilia A prophylaxis in resource-limited countries. Rondaptivon pegol (BT200) is a pegylated aptamer and has been shown to elevate the level of von Willebrand Factor (VWF) and FVIII in previous studies. A population pharmacokinetic model for BT200 was built and linked to the kinetic models of VWF and FVIII based on reasonable assumptions. The developed PK/PD model for BT200 described the observed kinetic of BT200, VWF, and FVIII in healthy volunteers and patients with mild-to-moderate hemophilia A from two clinical trials. The developed model was evaluated using an external dataset in patients with severe hemophilia A taking recombinant FVIII products. The developed and evaluated PK/PD model was able to describe and predict concentration-time profiles of BT200, VWF, and FVIII in healthy volunteers and patients with hemophilia A. Concentration-time profiles of FVIII were then predicted following coadministration of plasma-derived FVIII concentrate and BT200 under various dosing scenarios in virtual patients with severe hemophilia A. Plasma-derived products, that contain VWF, are more accessible in low-resource countries as compared to their recombinant counterparts. The predicted time above 1 and 3 IU/dL FVIII in one week was compared between scenarios in the absence and presence of BT200. A combination dose of 6 mg BT200 once weekly plus 10 IU/kg plasma-derived FVIII twice weekly maintained similar coverage to a 30 IU/kg FVIII thrice weekly dose in absence of BT200, representing only 22% of the FVIII dose per week.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.