{"title":"Application of quantitative pharmacology analysis to support early clinical development of oncology drugs: dose selection.","authors":"Ningyuan Zhang, Yu Li, Wenbin Cui, Xiangqing Yu, Ying Huang","doi":"10.1080/00498254.2024.2377577","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of appropriate starting dose and suitable method to predict an efficacious dose for novel oncology drug in the early clinical development stage poses significant challenges. The traditional methods of using body surface area transformation from toxicology studies to predict the first-in human (FIH) starting dose, or simply selecting the maximum tolerated dose (MTD) or maximum administered dose (MAD) as efficacious dose or recommended phase 2 dose (RP2D), are usually inadequate and risky for novel oncology drugs.Due to the regulatory efforts aimed at improving dose optimisation in oncology drug development, clinical dose selection is now shifting away from these traditional methods towards a comprehensive benefit/risk assessment-based approach. Quantitative pharmacology analysis (QPA) plays a crucial role in this new paradigm. This mini-review summarises the use of QPA in selecting the starting dose for oncology FIH studies and potential efficacious doses for expansion or phase 2 trials. QPA allows for a more rational and scientifically based approach to dose selection by integrating information across studies and development phases.In conclusion, the application of QPA in oncology drug development has the potential to significantly enhance the success rates of clinical trials and ultimately support clinical decision-making, particularly in dose selection.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"420-423"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2377577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The selection of appropriate starting dose and suitable method to predict an efficacious dose for novel oncology drug in the early clinical development stage poses significant challenges. The traditional methods of using body surface area transformation from toxicology studies to predict the first-in human (FIH) starting dose, or simply selecting the maximum tolerated dose (MTD) or maximum administered dose (MAD) as efficacious dose or recommended phase 2 dose (RP2D), are usually inadequate and risky for novel oncology drugs.Due to the regulatory efforts aimed at improving dose optimisation in oncology drug development, clinical dose selection is now shifting away from these traditional methods towards a comprehensive benefit/risk assessment-based approach. Quantitative pharmacology analysis (QPA) plays a crucial role in this new paradigm. This mini-review summarises the use of QPA in selecting the starting dose for oncology FIH studies and potential efficacious doses for expansion or phase 2 trials. QPA allows for a more rational and scientifically based approach to dose selection by integrating information across studies and development phases.In conclusion, the application of QPA in oncology drug development has the potential to significantly enhance the success rates of clinical trials and ultimately support clinical decision-making, particularly in dose selection.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology