Rubing Shi, Jing Ye, Ze Liu, Cheng Wang, Shengju Wu, Hui Shen, Qian Suo, Wanlu Li, Xiaosong He, Zhijun Zhang, Yaohui Tang, Guo-Yuan Yang, Yongting Wang
{"title":"Tropism-shifted AAV-PHP.eB-mediated bFGF gene therapy promotes varied neurorestoration after ischemic stroke in mice.","authors":"Rubing Shi, Jing Ye, Ze Liu, Cheng Wang, Shengju Wu, Hui Shen, Qian Suo, Wanlu Li, Xiaosong He, Zhijun Zhang, Yaohui Tang, Guo-Yuan Yang, Yongting Wang","doi":"10.4103/NRR.NRR-D-23-01802","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202602000-00040/figure1/v/2025-05-05T160104Z/r/image-tiff AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor ( bFGF ) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"704-714"},"PeriodicalIF":5.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01802","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00040/figure1/v/2025-05-05T160104Z/r/image-tiff AAV-PHP.eB is an artificial adeno-associated virus (AAV) that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically. While AAV-PHP.eB has been used in various disease models, its cellular tropism in cerebrovascular diseases remains unclear. In the present study, we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor ( bFGF ) gene therapy. Mice were injected intravenously with AAV-PHP.eB either 14 days prior to (pre-stroke) or 1 day following (post-stroke) transient middle cerebral artery occlusion. Notably, we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen (mNG). This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A (Ly6A). Furthermore, AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke. Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.