Discovery of Unprecedented Human Stercobilin Conjugates.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Sungjoon Cho, Lionel Cheruzel, Jingwei Cai, Stephen K Wrigley, Renia T Gemmell, Tetsuo Kokubun, Jonathan C P Steele, Laurent Salphati, Donglu Zhang, S Cyrus Khojasteh
{"title":"Discovery of Unprecedented Human Stercobilin Conjugates.","authors":"Sungjoon Cho, Lionel Cheruzel, Jingwei Cai, Stephen K Wrigley, Renia T Gemmell, Tetsuo Kokubun, Jonathan C P Steele, Laurent Salphati, Donglu Zhang, S Cyrus Khojasteh","doi":"10.1124/dmd.124.001725","DOIUrl":null,"url":null,"abstract":"<p><p>Two unique metabolites (M18 and M19) were detected in feces of human volunteers dosed orally with [<sup>14</sup>C]inavolisib with a molecular ion of parent plus 304 Da. They were generated in vitro by incubation with fecal homogenates and we have evidence that they are formed chemically and possibly enzymatically. Structural elucidation by high resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the imidazole ring of inavolisib was covalently bound to partial structures derived from stercobilin, an end-product of heme catabolism produced by the gut microbiome. The structural difference between the two metabolites was the position of methyl and ethyl groups on the pyrrolidin-2-one moieties. We propose a mechanism of M18 and M19 generation from inavolisib and stercobilin whereby nucleophilic attack from the imidazole ring of inavolisib occurs to the bridging carbon of a stercobilin molecule. The proposed mechanism was supported by computational calculations of molecular orbitals and transition geometry. SIGNIFICANCE STATEMENT: We report the characterization of two previously undescribed conjugates of the phosphoinositide 3-kinase inhibitor inavolisib, generated by reaction with stercobilin, an end-product of heme catabolism produced by the gut microbiome. These conjugates were confirmed by generating them using in vitro fecal homogenate incubation via nonenzymatic and possibly enzymatic reactions. Given the unique nature of the conjugate, it is plausible that it may have been overlooked with other small molecule drugs in prior studies.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"981-987"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001725","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Two unique metabolites (M18 and M19) were detected in feces of human volunteers dosed orally with [14C]inavolisib with a molecular ion of parent plus 304 Da. They were generated in vitro by incubation with fecal homogenates and we have evidence that they are formed chemically and possibly enzymatically. Structural elucidation by high resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the imidazole ring of inavolisib was covalently bound to partial structures derived from stercobilin, an end-product of heme catabolism produced by the gut microbiome. The structural difference between the two metabolites was the position of methyl and ethyl groups on the pyrrolidin-2-one moieties. We propose a mechanism of M18 and M19 generation from inavolisib and stercobilin whereby nucleophilic attack from the imidazole ring of inavolisib occurs to the bridging carbon of a stercobilin molecule. The proposed mechanism was supported by computational calculations of molecular orbitals and transition geometry. SIGNIFICANCE STATEMENT: We report the characterization of two previously undescribed conjugates of the phosphoinositide 3-kinase inhibitor inavolisib, generated by reaction with stercobilin, an end-product of heme catabolism produced by the gut microbiome. These conjugates were confirmed by generating them using in vitro fecal homogenate incubation via nonenzymatic and possibly enzymatic reactions. Given the unique nature of the conjugate, it is plausible that it may have been overlooked with other small molecule drugs in prior studies.

发现史无前例的人类软骨素共轭物。
在口服[14C]inavolisib的人类志愿者粪便中检测到两种独特的代谢物(M18和M19),其分子离子为母体加304 Da。它们是通过与粪便匀浆培养在体外生成的,我们有证据表明它们是通过化学反应生成的,也可能是通过酶反应生成的。通过高分辨率质谱和核磁共振光谱进行的结构阐释显示,inavolisib 的咪唑环与粪臭素的部分结构共价结合,粪臭素是肠道微生物群产生的血红素分解代谢的最终产物。这两种代谢物的结构差异在于吡咯烷-2-酮分子上甲基和乙基的位置。我们提出了伊伐利昔和麦角林生成 M18 和 M19 的机制,即伊伐利昔的咪唑环与麦角林分子的桥碳发生亲核攻击。分子轨道和过渡几何的计算支持了所提出的机制。意义声明 我们报告了 PI3K 抑制剂 inavolisib 的两种以前未曾描述过的共轭物的特性,这两种共轭物是通过与粪臭素(一种由肠道微生物群产生的血红素分解代谢的最终产物)反应生成的。这些共轭物是通过体外粪便匀浆培养,经非酶反应和可能的酶反应生成的。鉴于这种共轭物的独特性质,在以前的研究中,它可能与其他小分子药物一起被忽视了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信