{"title":"Synthesis, structure and red-light emission of a manganese halide directed by a methyldiphenylphosphine oxide complex.","authors":"Jia Wei Li, Mengyuan Niu, Wei Feng, Wenke Dong, Yanjie Liu, Jingjing Yang, Chunjie Wang, Hui Zhang, Wei Wu Song","doi":"10.1107/S2053229624006405","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II), [Mn(C<sub>13</sub>H<sub>13</sub>OP)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][MnCl<sub>4</sub>] or [Mn(MDPPO)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][MnCl<sub>4</sub>] (MDPPO is methyldiphenylphosphine oxide), was synthesized through the solvothermal reaction of MnCl<sub>2</sub> with the neutral molecule MDPPO. In this compound, [Mn(MDPPO)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> acts as the cation, while [MnCl<sub>4</sub>]<sup>2-</sup> serves as the anion, enabling the co-existence of tetrahedral and octahedral structures within the same system. Remarkably, the compound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX<sub>4</sub>-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn<sup>2+</sup> of [MnCl<sub>4</sub>]<sup>2-</sup>. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"412-418"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section C Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2053229624006405","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II), [Mn(C13H13OP)4(H2O)2][MnCl4] or [Mn(MDPPO)4(H2O)2][MnCl4] (MDPPO is methyldiphenylphosphine oxide), was synthesized through the solvothermal reaction of MnCl2 with the neutral molecule MDPPO. In this compound, [Mn(MDPPO)4(H2O)2]2+ acts as the cation, while [MnCl4]2- serves as the anion, enabling the co-existence of tetrahedral and octahedral structures within the same system. Remarkably, the compound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX4-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn2+ of [MnCl4]2-. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.