Alternatives to the statistical mass confusion of testing for no-effect

Josh L. Morgan
{"title":"Alternatives to the statistical mass confusion of testing for no-effect","authors":"Josh L. Morgan","doi":"arxiv-2407.07114","DOIUrl":null,"url":null,"abstract":"Statisticians and researchers have argued about the merits of effect size\nestimation relative to hypothesis testing for decades. Cell biology has largely\navoided this debate and is now in a quantitation crisis. In experimental cell\nbiology, statistical analysis has grown to mean testing the null hypothesis\nthat there was no experimental effect. This weak form of hypothesis testing\nneglects effect size, is universally misinterpreted, and is disastrously prone\nto error when combined with high-throughput cell biology. The first part of the\nsolution proposed here is to limit statistical hypothesis testing to the small\nsubset of experiments where a biologically meaningful null hypotheses can be\ndefined prior to the experiment. The second part of the solution is to make\nconfidence intervals the default statistic in cell biology.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statisticians and researchers have argued about the merits of effect size estimation relative to hypothesis testing for decades. Cell biology has largely avoided this debate and is now in a quantitation crisis. In experimental cell biology, statistical analysis has grown to mean testing the null hypothesis that there was no experimental effect. This weak form of hypothesis testing neglects effect size, is universally misinterpreted, and is disastrously prone to error when combined with high-throughput cell biology. The first part of the solution proposed here is to limit statistical hypothesis testing to the small subset of experiments where a biologically meaningful null hypotheses can be defined prior to the experiment. The second part of the solution is to make confidence intervals the default statistic in cell biology.
检验无效应的统计大规模混乱的替代方案
几十年来,统计学家和研究人员一直在争论效应大小估计相对于假设检验的优劣。细胞生物学在很大程度上回避了这一争论,目前正处于量化危机之中。在细胞生物学实验中,统计分析已发展为对没有实验效应的零假设进行检验。这种薄弱的假设检验形式忽视了效应大小,被普遍曲解,而且在与高通量细胞生物学相结合时,很容易出现灾难性的错误。本文提出的解决方案的第一部分是将统计假设检验限制在一小部分实验中,在这些实验中,生物学意义上的零假设可以在实验前确定。解决方案的第二部分是将置信区间作为细胞生物学的默认统计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信