Natural Language Mechanisms via Self-Resolution with Foundation Models

Nicolas Della Penna
{"title":"Natural Language Mechanisms via Self-Resolution with Foundation Models","authors":"Nicolas Della Penna","doi":"arxiv-2407.07845","DOIUrl":null,"url":null,"abstract":"Practical mechanisms often limit agent reports to constrained formats like\ntrades or orderings, potentially limiting the information agents can express.\nWe propose a novel class of mechanisms that elicit agent reports in natural\nlanguage and leverage the world-modeling capabilities of large language models\n(LLMs) to select outcomes and assign payoffs. We identify sufficient conditions\nfor these mechanisms to be incentive-compatible and efficient as the LLM being\na good enough world model and a strong inter-agent information\nover-determination condition. We show situations where these LM-based\nmechanisms can successfully aggregate information in signal structures on which\nprediction markets fail.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"168 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Practical mechanisms often limit agent reports to constrained formats like trades or orderings, potentially limiting the information agents can express. We propose a novel class of mechanisms that elicit agent reports in natural language and leverage the world-modeling capabilities of large language models (LLMs) to select outcomes and assign payoffs. We identify sufficient conditions for these mechanisms to be incentive-compatible and efficient as the LLM being a good enough world model and a strong inter-agent information over-determination condition. We show situations where these LM-based mechanisms can successfully aggregate information in signal structures on which prediction markets fail.
通过基础模型自我解决的自然语言机制
我们提出了一类新的机制,它们能以自然语言诱导代理报告,并利用大型语言模型(LLM)的世界建模能力来选择结果和分配报酬。我们确定了这些机制与激励相容且高效的充分条件,即 LLM 是一个足够好的世界模型和一个强大的代理间信息过度决定条件。我们展示了在哪些情况下,这些基于 LLM 的机制可以成功地将信息聚合在预测市场失效的信号结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信