{"title":"Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods","authors":"Sharana Kumar Shivanand","doi":"10.1615/int.j.uncertaintyquantification.2024051528","DOIUrl":null,"url":null,"abstract":"We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051528","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.