Large stroke electromagnetic redundant actuated six degrees-of-freedom parallel compliant micropositioning stage

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chao Xie, Leijie Lai, Yunzhuang Chen and Limin Zhu
{"title":"Large stroke electromagnetic redundant actuated six degrees-of-freedom parallel compliant micropositioning stage","authors":"Chao Xie, Leijie Lai, Yunzhuang Chen and Limin Zhu","doi":"10.1088/1361-6439/ad5dc6","DOIUrl":null,"url":null,"abstract":"In this paper, a novel large stroke six degrees-of-freedom (6-DOF) electromagnetic redundant actuated micropositioning stage is proposed. The 6-DOF stage adopts a configuration that is composed of eight parallel driving branch chains. Each branch chain is driven by a voice coil motor and incorporates a parallelogram flexure mechanism and a decoupling mechanism for guidance and decoupling. The positioning stage is symmetrically arranged and possesses the advantages of simple structure and easy assembly. As a result, assembly errors are significantly reduced and positioning accuracy is enhanced. The decoupling mechanism uses a large stroke flexible ball joint that increases the motion range of the positioning stage and decouples the coupled motion, thereby enhancing the stability and accuracy of the stage. To evaluate the performance of the stage, static and dynamic analytical models of the 6-DOF stage are derived based on the compliance matrix method and the Lagrangian dynamic modeling method. Additionally, the accuracy of the analytical models and the static and dynamic performances of the positioning stage are verified through finite element analysis (FEA) and experimental testing. The experimental results demonstrate that the stage realizes a workspace of 2.06 mm × 2.02 mm × 3.1 mm × 23.4 mrad × 23.1 mrad × 14.9 mrad. Finally, to verify the tracking performance trajectory of the 6-DOF positioning stage, tracking experiments are performed using a controller that combines a proportional-integral controller and a notch filter.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"31 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad5dc6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel large stroke six degrees-of-freedom (6-DOF) electromagnetic redundant actuated micropositioning stage is proposed. The 6-DOF stage adopts a configuration that is composed of eight parallel driving branch chains. Each branch chain is driven by a voice coil motor and incorporates a parallelogram flexure mechanism and a decoupling mechanism for guidance and decoupling. The positioning stage is symmetrically arranged and possesses the advantages of simple structure and easy assembly. As a result, assembly errors are significantly reduced and positioning accuracy is enhanced. The decoupling mechanism uses a large stroke flexible ball joint that increases the motion range of the positioning stage and decouples the coupled motion, thereby enhancing the stability and accuracy of the stage. To evaluate the performance of the stage, static and dynamic analytical models of the 6-DOF stage are derived based on the compliance matrix method and the Lagrangian dynamic modeling method. Additionally, the accuracy of the analytical models and the static and dynamic performances of the positioning stage are verified through finite element analysis (FEA) and experimental testing. The experimental results demonstrate that the stage realizes a workspace of 2.06 mm × 2.02 mm × 3.1 mm × 23.4 mrad × 23.1 mrad × 14.9 mrad. Finally, to verify the tracking performance trajectory of the 6-DOF positioning stage, tracking experiments are performed using a controller that combines a proportional-integral controller and a notch filter.
大行程电磁冗余致动六自由度平行顺应式微定位平台
本文提出了一种新型大行程六自由度(6-DOF)电磁冗余致动微定位平台。6-DOF 平台采用由八条平行驱动支链组成的结构。每个支链由音圈电机驱动,并包含一个平行四边形挠性机构和一个用于导向和退耦的退耦机构。定位平台采用对称布置,具有结构简单、易于装配等优点。因此,装配误差大大降低,定位精度也得到了提高。解耦机构采用大行程柔性球形关节,既增加了定位平台的运动范围,又实现了耦合运动的解耦,从而提高了平台的稳定性和精度。为了评估平台的性能,基于顺应矩阵法和拉格朗日动态建模法,推导出了 6-DOF 平台的静态和动态分析模型。此外,还通过有限元分析(FEA)和实验测试验证了分析模型的准确性以及定位平台的静态和动态性能。实验结果表明,该平台可实现 2.06 mm × 2.02 mm × 3.1 mm × 23.4 mrad × 23.1 mrad × 14.9 mrad 的工作空间。最后,为了验证 6-DOF 定位平台的跟踪性能轨迹,使用比例积分控制器和陷波滤波器相结合的控制器进行了跟踪实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信