Finite-Resource Performance of Small-Satellite-Based Quantum-Key-Distribution Missions

Tanvirul Islam, Jasminder S. Sidhu, Brendon L. Higgins, Thomas Brougham, Tom Vergoossen, Daniel K.L. Oi, Thomas Jennewein, Alexander Ling
{"title":"Finite-Resource Performance of Small-Satellite-Based Quantum-Key-Distribution Missions","authors":"Tanvirul Islam, Jasminder S. Sidhu, Brendon L. Higgins, Thomas Brougham, Tom Vergoossen, Daniel K.L. Oi, Thomas Jennewein, Alexander Ling","doi":"10.1103/prxquantum.5.030101","DOIUrl":null,"url":null,"abstract":"In satellite-based quantum-key-distribution (QKD), the number of secret bits that can be generated in a single satellite pass over the ground station is severely restricted by the pass duration and the free-space optical channel loss. High channel loss may decrease the signal-to-noise ratio due to background noise, reduce the number of generated raw key bits, and increase the quantum bit error rate (QBER), all of which have detrimental effects on the output secret key length. Under finite-size security analysis, a higher QBER increases the minimum raw key length necessary for nonzero secret-key-length extraction due to less efficient reconciliation and postprocessing overheads. We show that recent developments in finite-key analysis allow three different small-satellite-based QKD projects, CQT-Sat, the United Kingdom QUARC-ROKS, and QEYSSat, to produce secret keys even under conditions of very high loss, improving on estimates based on previous finite-key bounds. This suggests that satellites in low Earth orbit can satisfy finite-size security requirements but that this remains challenging for satellites further from Earth. We analyze the performance of each mission to provide an informed route toward improving the performance of small-satellite QKD missions. We highlight the short- and long-term perspectives on the challenges and potential future developments in small-satellite-based QKD and quantum networks. In particular, we discuss some of the experimental and theoretical bottlenecks and the improvements necessary to achieve QKD and wider quantum networking capabilities in daylight and at different altitudes.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In satellite-based quantum-key-distribution (QKD), the number of secret bits that can be generated in a single satellite pass over the ground station is severely restricted by the pass duration and the free-space optical channel loss. High channel loss may decrease the signal-to-noise ratio due to background noise, reduce the number of generated raw key bits, and increase the quantum bit error rate (QBER), all of which have detrimental effects on the output secret key length. Under finite-size security analysis, a higher QBER increases the minimum raw key length necessary for nonzero secret-key-length extraction due to less efficient reconciliation and postprocessing overheads. We show that recent developments in finite-key analysis allow three different small-satellite-based QKD projects, CQT-Sat, the United Kingdom QUARC-ROKS, and QEYSSat, to produce secret keys even under conditions of very high loss, improving on estimates based on previous finite-key bounds. This suggests that satellites in low Earth orbit can satisfy finite-size security requirements but that this remains challenging for satellites further from Earth. We analyze the performance of each mission to provide an informed route toward improving the performance of small-satellite QKD missions. We highlight the short- and long-term perspectives on the challenges and potential future developments in small-satellite-based QKD and quantum networks. In particular, we discuss some of the experimental and theoretical bottlenecks and the improvements necessary to achieve QKD and wider quantum networking capabilities in daylight and at different altitudes.

Abstract Image

基于小卫星的量子密钥分发任务的有限资源性能
在基于卫星的量子密钥分发(QKD)中,卫星一次通过地面站所能生成的密钥比特数受到通过持续时间和自由空间光信道损耗的严重限制。高信道损耗可能会因背景噪声而降低信噪比,减少生成的原始密钥比特数,增加量子比特错误率(QBER),所有这些都会对输出密钥长度产生不利影响。在有限大小安全分析中,较高的 QBER 会增加非零秘钥长度提取所需的最小原始密钥长度,原因是调节和后处理开销效率较低。我们的研究表明,有限密钥分析的最新发展使得三个不同的基于小卫星的 QKD 项目(CQT-Sat、英国 QUARC-ROKS 和 QEYSSat)即使在极高损耗的条件下也能生成秘钥,从而改善了基于以前有限密钥边界的估计值。这表明低地球轨道上的卫星可以满足有限大小的安全要求,但对于距离地球更远的卫星来说,这仍然具有挑战性。我们分析了每个任务的性能,为提高小卫星 QKD 任务的性能提供了一条明智的途径。我们强调了小卫星 QKD 和量子网络面临的挑战和未来潜在发展的短期和长期前景。特别是,我们讨论了一些实验和理论瓶颈,以及在白天和不同高度实现 QKD 和更广泛的量子网络能力所需的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信