Partitions into Segal–Piatetski–Shapiro sequences

Ya-Li Li, Nian Hong Zhou
{"title":"Partitions into Segal–Piatetski–Shapiro sequences","authors":"Ya-Li Li, Nian Hong Zhou","doi":"10.1007/s11139-024-00896-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\kappa \\)</span> be any positive real number and <span>\\(m\\in \\mathbb {N}\\cup \\{\\infty \\}\\)</span> be given. Let <span>\\(p_{\\kappa , m}(n)\\)</span> denote the number of partitions of <i>n</i> into the parts from the Segal–Piatestki–Shapiro sequence <span>\\((\\lfloor \\ell ^{\\kappa }\\rfloor )_{\\ell \\in \\mathbb {N}}\\)</span> with at most <i>m</i> possible repetitions. In this paper, we establish some asymptotic formulas of Hardy–Ramanujan type for <span>\\(p_{\\kappa , m}(n)\\)</span>. As a necessary step in the proof, we prove that the Dirichlet series <span>\\(\\zeta _\\kappa (s)=\\sum _{n\\ge 1}\\lfloor n^{\\kappa }\\rfloor ^{-s}\\)</span> can be continued analytically beyond the imaginary axis except for simple poles at <span>\\(s=1/\\kappa -j, ~(0\\le j&lt; 1/\\kappa , j\\in \\mathbb {Z})\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00896-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\kappa \) be any positive real number and \(m\in \mathbb {N}\cup \{\infty \}\) be given. Let \(p_{\kappa , m}(n)\) denote the number of partitions of n into the parts from the Segal–Piatestki–Shapiro sequence \((\lfloor \ell ^{\kappa }\rfloor )_{\ell \in \mathbb {N}}\) with at most m possible repetitions. In this paper, we establish some asymptotic formulas of Hardy–Ramanujan type for \(p_{\kappa , m}(n)\). As a necessary step in the proof, we prove that the Dirichlet series \(\zeta _\kappa (s)=\sum _{n\ge 1}\lfloor n^{\kappa }\rfloor ^{-s}\) can be continued analytically beyond the imaginary axis except for simple poles at \(s=1/\kappa -j, ~(0\le j< 1/\kappa , j\in \mathbb {Z})\).

Segal-Piatetski-Shapiro 序列的分区
让 \(\kappa \) 是任意的正实数,并且 \(m\in \mathbb {N}\cup \{\infty \}\) 是给定的。让 \(p_{\{kappa , m}(n)\)表示将 n 分成 Segal-Piatestki-Shapiro 序列 \((\lfloor \ell ^{\kappa }\rfloor )_{\ell \in \mathbb {N}}\) 中最多可能重复 m 次的部分的个数。在本文中,我们为 \(p_{\kappa , m}(n)\) 建立了一些 Hardy-Ramanujan 类型的渐近公式。作为证明的必要步骤,我们证明了狄利克特数列 \(\zeta _\kappa (s)=\sum _{n\ge 1}\lfloor n^\{kappa }\rfloor ^{-s}/)除了在 \(s=1/\kappa -j, ~(0\le j< 1/\kappa , j\in \mathbb {Z})/)处的简单极点外,可以在虚轴之外继续分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信