Network inference from oscillatory signals based on circle map

Akari Matsuki, Hiroshi Kori, Ryota Kobayashi
{"title":"Network inference from oscillatory signals based on circle map","authors":"Akari Matsuki, Hiroshi Kori, Ryota Kobayashi","doi":"arxiv-2407.07445","DOIUrl":null,"url":null,"abstract":"To understand and control the dynamics of coupled oscillators, it is\nimportant to reveal the structure of the interaction network from observed\ndata. While various techniques have been developed for inferring the network of\nasynchronous systems, it remains challenging to infer the network of\nsynchronized oscillators without external stimulations. In this study, we\ndevelop a method for non-invasively inferring the network of synchronized\nand/or de-synchronized oscillators. An approach to network inference would be\nto fit the data to a set of differential equations describing the dynamics of\nphase oscillators. However, we show that this method fails to infer the true\nnetwork due to the problems that arise when we use short-time phase\ndifferences. Therefore, we propose a method based on the circle map, which\ndescribes the phase change in one oscillatory cycle. We demonstrate the\nefficacy of the proposed method through the successful inference of the network\nstructure from simulated data of limit cycle oscillator models. Our method\nprovides a unified and concise framework for network estimation for a wide\nclass of oscillator systems.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To understand and control the dynamics of coupled oscillators, it is important to reveal the structure of the interaction network from observed data. While various techniques have been developed for inferring the network of asynchronous systems, it remains challenging to infer the network of synchronized oscillators without external stimulations. In this study, we develop a method for non-invasively inferring the network of synchronized and/or de-synchronized oscillators. An approach to network inference would be to fit the data to a set of differential equations describing the dynamics of phase oscillators. However, we show that this method fails to infer the true network due to the problems that arise when we use short-time phase differences. Therefore, we propose a method based on the circle map, which describes the phase change in one oscillatory cycle. We demonstrate the efficacy of the proposed method through the successful inference of the network structure from simulated data of limit cycle oscillator models. Our method provides a unified and concise framework for network estimation for a wide class of oscillator systems.
基于圆图的振荡信号网络推理
要理解和控制耦合振荡器的动态,从观测数据中揭示相互作用网络的结构非常重要。虽然已经开发了多种推断异步系统网络的技术,但在没有外部刺激的情况下推断同步振荡器的网络仍然具有挑战性。在这项研究中,我们开发了一种非侵入式推断同步和/或去同步振荡器网络的方法。网络推断的一种方法是将数据拟合到描述相位振荡器动态的微分方程组中。然而,我们的研究表明,由于使用短时相位差时出现的问题,这种方法无法推断出真实的网络。因此,我们提出了一种基于圆图的方法,该方法描述了一个振荡周期中的相位变化。我们从极限周期振荡器模型的模拟数据中成功推断出网络结构,证明了所提方法的有效性。我们的方法为多种振荡器系统的网络估计提供了一个统一而简洁的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信