Curvature related geometrical properties of topologically charged EiBI-gravity spacetime

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Absos Ali Shaikh , Faizuddin Ahmed , Mousumi Sarkar
{"title":"Curvature related geometrical properties of topologically charged EiBI-gravity spacetime","authors":"Absos Ali Shaikh ,&nbsp;Faizuddin Ahmed ,&nbsp;Mousumi Sarkar","doi":"10.1016/j.newast.2024.102272","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this article is to study topologically charged Eddington-inspired Born–Infeld (briefly, EiBI) gravity spacetime. It is proved that the topologically charged EiBI spacetime executes different types of pseudosymmetry, viz. Ricci generalized pseudosymmetry as <span><math><mrow><mi>R</mi><mi>⋅</mi><mi>R</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, Ricci generalized projectively pseudosymmetry as <span><math><mrow><mi>P</mi><mi>⋅</mi><mi>R</mi><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, pseudosymmetry due to conformal curvature as <span><math><mrow><mi>C</mi><mi>⋅</mi><mi>C</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>ϵ</mi><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>6</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and pseudosymmetry due to conharmonic curvature as <span><math><mrow><mi>K</mi><mi>⋅</mi><mi>K</mi><mo>=</mo><mo>−</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>. Also, we have exhibited the linear dependence of <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> on the difference <span><math><mrow><mo>(</mo><mi>C</mi><mi>⋅</mi><mi>R</mi><mo>−</mo><mi>R</mi><mi>⋅</mi><mi>C</mi><mo>)</mo></mrow></math></span>. Moreover, it is exhibited that the topologically charged EiBI spacetime is an Einstein manifold of level 3, 2-quasi Einstein, conformal 2-forms are recurrent, Ricci 1-forms are recurrent and generalized Roter type. As a special case, we have acquired the geometric structures of point-like global monopole (briefly, PGM) spacetime and topologically charged Ellis Bronnikov Wormhole (briefly, TCEBW) spacetime. Also, we have explored that the topologically charged EiBI spacetime possesses almost <span><math><mi>η</mi></math></span>-Ricci-Yamabe soliton, almost <span><math><mi>η</mi></math></span>-Ricci soliton, and for a certain condition it admits almost Ricci soliton. Further, it is also verified that such a spacetime reveals generalized curvature inheritance and for a particular condition it admits curvature inheritance. In addition, it is fascinating to mention that the energy momentum tensor of the topologically charged EiBI spacetime satisfies several pseudosymmetric type conditions and also the tensors <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>T</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> are linearly dependent. Finally, the curvature-restricted geometric structures of topologically charged EiBI spacetime and Morris–Thorne Wormhole (briefly, MTW) spacetime are compared concerning the different types of symmetry and pseudosymmetry properties.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"112 ","pages":"Article 102272"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000861","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this article is to study topologically charged Eddington-inspired Born–Infeld (briefly, EiBI) gravity spacetime. It is proved that the topologically charged EiBI spacetime executes different types of pseudosymmetry, viz. Ricci generalized pseudosymmetry as RR=Q(S,R), Ricci generalized projectively pseudosymmetry as PR=23Q(S,R), pseudosymmetry due to conformal curvature as CC=(r2α2+2ϵα2r2)6r4Q(g,C) and pseudosymmetry due to conharmonic curvature as KK=(α21)2r2Q(g,K). Also, we have exhibited the linear dependence of Q(g,C) and Q(S,C) on the difference (CRRC). Moreover, it is exhibited that the topologically charged EiBI spacetime is an Einstein manifold of level 3, 2-quasi Einstein, conformal 2-forms are recurrent, Ricci 1-forms are recurrent and generalized Roter type. As a special case, we have acquired the geometric structures of point-like global monopole (briefly, PGM) spacetime and topologically charged Ellis Bronnikov Wormhole (briefly, TCEBW) spacetime. Also, we have explored that the topologically charged EiBI spacetime possesses almost η-Ricci-Yamabe soliton, almost η-Ricci soliton, and for a certain condition it admits almost Ricci soliton. Further, it is also verified that such a spacetime reveals generalized curvature inheritance and for a particular condition it admits curvature inheritance. In addition, it is fascinating to mention that the energy momentum tensor of the topologically charged EiBI spacetime satisfies several pseudosymmetric type conditions and also the tensors Q(g,R), Q(T,R) and Q(S,R) are linearly dependent. Finally, the curvature-restricted geometric structures of topologically charged EiBI spacetime and Morris–Thorne Wormhole (briefly, MTW) spacetime are compared concerning the different types of symmetry and pseudosymmetry properties.

拓扑带电 EiBI 引力时空的曲率相关几何特性
本文旨在研究拓扑带电的爱丁顿启发的玻恩-因费尔德(简称 EiBI)引力时空。研究证明,带拓扑电荷的 EiBI 时空具有不同类型的伪对称性,即利玛窦广义伪对称性、利玛窦广义投影伪对称性、共形曲率引起的伪对称性和共谐曲率引起的伪对称性。同时,我们还展示了 和 对差分的线性依赖性。此外,我们还证明了拓扑上带电的 EiBI 时空是第 3 级爱因斯坦流形、2-准爱因斯坦流形、共形 2-forms 周期、Ricci 1-forms 周期和广义罗特型。作为特例,我们获得了点样全局单极(简称 PGM)时空和拓扑带电埃利斯-布朗尼科夫虫洞(简称 TCEBW)时空的几何结构。同时,我们还探索了拓扑带电的 EiBI 时空具有几乎-里奇-山边孤子、几乎-里奇孤子,并且在一定条件下,它还具有几乎里奇孤子。此外,还验证了这种时空具有广义曲率继承性,而且在特定条件下它还具有曲率继承性。此外,有趣的是,拓扑带电 EiBI 时空的能量动量张量满足多个伪对称类型条件,而且张量 、 和 都是线性相关的。最后,比较了拓扑带电 EiBI 时空和莫里斯-索恩虫洞(简称 MTW)时空的曲率受限几何结构的不同对称类型和伪对称特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信