Existence Results for Nonlinear Hilfer Pantograph Fractional Integrodifferential Equations

IF 1.9 3区 数学 Q1 MATHEMATICS
B. Radhakrishnan, T. Sathya, M. A. Alqudah, W. Shatanawi, T. Abdeljawad
{"title":"Existence Results for Nonlinear Hilfer Pantograph Fractional Integrodifferential Equations","authors":"B. Radhakrishnan, T. Sathya, M. A. Alqudah, W. Shatanawi, T. Abdeljawad","doi":"10.1007/s12346-024-01069-x","DOIUrl":null,"url":null,"abstract":"<p>The main aim of this paper is to study the existence and uniqueness solutions for the nonlinear Hilfer pantograph fractional differential equations. This paper initiates with the persistence of the nonlinear Hilfer pantograph fractional differential equation. Also, it extended to the fractional integrodifferential equation. The premises are attained by using the fixed-point theorem. Ultimately, numerical examples are furnished to demonstrate our outcomes.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01069-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this paper is to study the existence and uniqueness solutions for the nonlinear Hilfer pantograph fractional differential equations. This paper initiates with the persistence of the nonlinear Hilfer pantograph fractional differential equation. Also, it extended to the fractional integrodifferential equation. The premises are attained by using the fixed-point theorem. Ultimately, numerical examples are furnished to demonstrate our outcomes.

Abstract Image

非线性 Hilfer 泛函分式积分微分方程的存在性结果
本文的主要目的是研究非线性 Hilfer 受电弓分数微分方程的存在性和唯一性解。本文从非线性 Hilfer 受电弓分式微分方程的持久性入手。此外,它还扩展到了分数积分微分方程。前提是利用定点定理。最后,还提供了数值示例来证明我们的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信