{"title":"Eigenvalue programming beyond matrices","authors":"Masaru Ito, Bruno F. Lourenço","doi":"10.1007/s10589-024-00591-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we analyze and solve eigenvalue programs, which consist of the task of minimizing a function subject to constraints on the “eigenvalues” of the decision variable. Here, by making use of the FTvN systems framework introduced by Gowda, we interpret “eigenvalues” in a broad fashion going beyond the usual eigenvalues of matrices. This allows us to shed new light on classical problems such as inverse eigenvalue problems and also leads to new applications. In particular, after analyzing and developing a simple projected gradient algorithm for general eigenvalue programs, we show that eigenvalue programs can be used to express what we call <i>vanishing quadratic constraints</i>. A vanishing quadratic constraint requires that a given system of convex quadratic inequalities be satisfied and at least a certain number of those inequalities must be tight. As a particular case, this includes the problem of finding a point <i>x</i> in the intersection of <i>m</i> ellipsoids in such a way that <i>x</i> is also in the boundary of at least <span>\\(\\ell \\)</span> of the ellipsoids, for some fixed <span>\\(\\ell > 0\\)</span>. At the end, we also present some numerical experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00591-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we analyze and solve eigenvalue programs, which consist of the task of minimizing a function subject to constraints on the “eigenvalues” of the decision variable. Here, by making use of the FTvN systems framework introduced by Gowda, we interpret “eigenvalues” in a broad fashion going beyond the usual eigenvalues of matrices. This allows us to shed new light on classical problems such as inverse eigenvalue problems and also leads to new applications. In particular, after analyzing and developing a simple projected gradient algorithm for general eigenvalue programs, we show that eigenvalue programs can be used to express what we call vanishing quadratic constraints. A vanishing quadratic constraint requires that a given system of convex quadratic inequalities be satisfied and at least a certain number of those inequalities must be tight. As a particular case, this includes the problem of finding a point x in the intersection of m ellipsoids in such a way that x is also in the boundary of at least \(\ell \) of the ellipsoids, for some fixed \(\ell > 0\). At the end, we also present some numerical experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.