Fuzzy Spheres in Stringy Matrix Models: Quantifying Chaos in a Mixed Phase Space

Paolo Amore, Leopoldo A. Pando Zayas, Juan F. Pedraza, Norma Quiroz, César A. Terrero-Escalante
{"title":"Fuzzy Spheres in Stringy Matrix Models: Quantifying Chaos in a Mixed Phase Space","authors":"Paolo Amore, Leopoldo A. Pando Zayas, Juan F. Pedraza, Norma Quiroz, César A. Terrero-Escalante","doi":"arxiv-2407.07259","DOIUrl":null,"url":null,"abstract":"We consider a truncation of the BMN matrix model to a configuration of two\nfuzzy spheres, described by two coupled non-linear oscillators dependent on the\nmass parameter $\\mu$. The classical phase diagram of the system generically\n($\\mu \\neq 0$) contains three equilibrium points: two centers and a\ncenter-saddle; as $\\mu \\to 0$ the system exhibits a pitchfork bifurcation. We\ndemonstrate that the system is exactly integrable in quadratures for $\\mu=0$,\nwhile for very large values of $\\mu$, it approaches another integrable point\ncharacterized by two harmonic oscillators. The classical phase space is mixed,\ncontaining both integrable islands and chaotic regions, as evidenced by the\nclassical Lyapunov spectrum. At the quantum level, we explore indicators of\nearly and late time chaos. The eigenvalue spacing is best described by a Brody\ndistribution, which interpolates between Poisson and Wigner distributions; it\ndovetails, at the quantum level, the classical results and reemphasizes the\nnotion that the quantum system is mixed. We also study the spectral form factor\nand the quantum Lyapunov exponent, as defined by out-of-time-ordered\ncorrelators. These two indicators of quantum chaos exhibit weak correlations\nwith the Brody distribution. We speculate that the behavior of the system as\n$\\mu \\to 0$ dominates the spectral form factor and the quantum Lyapunov\nexponent, making these indicators of quantum chaos less effective in the\ncontext of a mixed phase space.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a truncation of the BMN matrix model to a configuration of two fuzzy spheres, described by two coupled non-linear oscillators dependent on the mass parameter $\mu$. The classical phase diagram of the system generically ($\mu \neq 0$) contains three equilibrium points: two centers and a center-saddle; as $\mu \to 0$ the system exhibits a pitchfork bifurcation. We demonstrate that the system is exactly integrable in quadratures for $\mu=0$, while for very large values of $\mu$, it approaches another integrable point characterized by two harmonic oscillators. The classical phase space is mixed, containing both integrable islands and chaotic regions, as evidenced by the classical Lyapunov spectrum. At the quantum level, we explore indicators of early and late time chaos. The eigenvalue spacing is best described by a Brody distribution, which interpolates between Poisson and Wigner distributions; it dovetails, at the quantum level, the classical results and reemphasizes the notion that the quantum system is mixed. We also study the spectral form factor and the quantum Lyapunov exponent, as defined by out-of-time-ordered correlators. These two indicators of quantum chaos exhibit weak correlations with the Brody distribution. We speculate that the behavior of the system as $\mu \to 0$ dominates the spectral form factor and the quantum Lyapunov exponent, making these indicators of quantum chaos less effective in the context of a mixed phase space.
弦矩阵模型中的模糊球:量化混合相空间中的混沌
我们考虑将BMN矩阵模型截断为两个模糊球的配置,由两个依赖于质量参数$\mu$的耦合非线性振荡器来描述。该系统的经典相图一般($\mu \neq 0$)包含三个平衡点:两个中心和一个中心-马鞍;当$\mu \to 0$时,该系统表现出一个叉形分叉。我们证明,当 $\mu=0$ 时,系统在四元数上是完全可积分的,而当 $\mu$ 的值非常大时,系统会接近另一个由两个谐振子构成的可积分点。经典相空间是混合的,既包含可积分岛,也包含混沌区,经典李亚普诺夫谱就是证明。在量子层面,我们探索了早期和晚期混沌的指标。布罗迪分布是对特征值间距的最佳描述,它介于泊松分布和维格纳分布之间;在量子层面,它与经典结果相吻合,并再次强调了量子系统是混合系统的说法。我们还研究了谱形式因子和量子李亚普诺夫指数,它们由超时序相关器定义。这两个量子混沌指标与布罗迪分布呈现出微弱的相关性。我们推测,系统在$\mu \to 0$时的行为主导了谱形式因子和量子李亚普诺夫指数,使得这些量子混沌指标在混合相空间的背景下不那么有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信