The continuity equation in the Heisenberg-periodic case: a representation formula and an application to Mean Field Games

Alessandra Cutrì, Paola Mannucci, Claudio Marchi, Nicoletta Tchou
{"title":"The continuity equation in the Heisenberg-periodic case: a representation formula and an application to Mean Field Games","authors":"Alessandra Cutrì, Paola Mannucci, Claudio Marchi, Nicoletta Tchou","doi":"10.1007/s00030-024-00967-y","DOIUrl":null,"url":null,"abstract":"<p>We provide a representation of the weak solution of the continuity equation on the Heisenberg group <span>\\({\\mathbb {H}}^1\\)</span> with periodic data (the periodicity is suitably adapted to the group law). This solution is the push forward of a measure concentrated on the flux associated with the drift of the continuity equation. Furthermore, we shall use this interpretation for proving that weak solutions to first order Mean Field Games on <span>\\({\\mathbb {H}}^1\\)</span> are also mild solutions.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00967-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a representation of the weak solution of the continuity equation on the Heisenberg group \({\mathbb {H}}^1\) with periodic data (the periodicity is suitably adapted to the group law). This solution is the push forward of a measure concentrated on the flux associated with the drift of the continuity equation. Furthermore, we shall use this interpretation for proving that weak solutions to first order Mean Field Games on \({\mathbb {H}}^1\) are also mild solutions.

海森堡周期情况下的连续性方程:表示公式及平均场博弈的应用
我们提供了海森堡群 \({\mathbb {H}}^1\)上连续性方程弱解的周期性数据表示(周期性是根据群法适当调整的)。这种解是对与连续性方程漂移相关的通量集中的度量的推进。此外,我们将用这种解释来证明一阶平均场博弈在 \({\mathbb {H}}^1\) 上的弱解也是温和解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信