Existence and uniqueness of solutions for $$\Psi $$ -Caputo fractional neutral sequential differential equations on time scales

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Najat Chefnaj, Khalid Hilal, Ahmed Kajouni
{"title":"Existence and uniqueness of solutions for $$\\Psi $$ -Caputo fractional neutral sequential differential equations on time scales","authors":"Najat Chefnaj, Khalid Hilal, Ahmed Kajouni","doi":"10.1007/s12190-024-02179-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the existence and uniqueness of solutions for a class of initial value problems involving implicit fractional differential equations with a fractional <span>\\(\\Psi \\)</span>-Caputo derivative on time scales. We employ fixed point theorems by Banach, a nonlinear alternative of Leray-Schauder’s type, and Krasnoselskii’s theorem to establish these results. Finally, we present two examples to demonstrate the effectiveness of the obtained analytical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02179-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the existence and uniqueness of solutions for a class of initial value problems involving implicit fractional differential equations with a fractional \(\Psi \)-Caputo derivative on time scales. We employ fixed point theorems by Banach, a nonlinear alternative of Leray-Schauder’s type, and Krasnoselskii’s theorem to establish these results. Finally, we present two examples to demonstrate the effectiveness of the obtained analytical results.

时间尺度上 $$\Psi $$ -Caputo 分数中性序列微分方程解的存在性和唯一性
在本文中,我们建立了一类涉及时间尺度上分数 \(\Psi \)-Caputo 导数的隐式分数微分方程的初值问题的解的存在性和唯一性。我们利用巴纳赫的定点定理、Leray-Schauder 类型的非线性替代定理和 Krasnoselskii 定理来建立这些结果。最后,我们举两个例子来证明所获分析结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信