Dynamics and sorting of run-and-tumble particles in fluid flows with transport barriers

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rafael Dias Vilela, Alfredo J Grados and Jean-Régis Angilella
{"title":"Dynamics and sorting of run-and-tumble particles in fluid flows with transport barriers","authors":"Rafael Dias Vilela, Alfredo J Grados and Jean-Régis Angilella","doi":"10.1088/2632-072x/ad5bb2","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of individual run-and-tumble particles in a convective flow which is a prototype of fluid flows with transport barriers. We consider the most prevalent case of swimmers denser than the background fluid. As a result of gravity and the effects of the carrying flow, in the absence of swimming the particles either sediment or remain in a convective cell. When run-and-tumble also takes place, the particles may move to upper convective cells. We derive analytically the probability of uprise. Since that probability in a given fluid flow can vary strongly across species, our findings inspire a purely dynamical mechanism for species extraction in the dilute regime. Numerical simulations support our analytical predictions and demonstrate that a judicious choice of the fluid flow’s parameters can lead to particle sorting with an arbitrary degree of purity.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad5bb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the dynamics of individual run-and-tumble particles in a convective flow which is a prototype of fluid flows with transport barriers. We consider the most prevalent case of swimmers denser than the background fluid. As a result of gravity and the effects of the carrying flow, in the absence of swimming the particles either sediment or remain in a convective cell. When run-and-tumble also takes place, the particles may move to upper convective cells. We derive analytically the probability of uprise. Since that probability in a given fluid flow can vary strongly across species, our findings inspire a purely dynamical mechanism for species extraction in the dilute regime. Numerical simulations support our analytical predictions and demonstrate that a judicious choice of the fluid flow’s parameters can lead to particle sorting with an arbitrary degree of purity.
有传输障碍的流体流动中翻滚颗粒的动力学和分拣
我们研究了对流中单个奔跑和翻滚粒子的动力学,对流是具有传输障碍的流体流动的原型。我们考虑了最常见的游动粒子密度大于背景流体密度的情况。由于重力和携带流的影响,在没有游动的情况下,颗粒要么沉积,要么停留在对流单元中。当发生奔跑和翻滚时,颗粒可能会移动到上层对流单元。我们通过分析得出上浮概率。由于在给定的流体流动中,不同物种的上浮概率会有很大差异,我们的发现启发了稀释体系中物种萃取的纯动力学机制。数值模拟支持我们的分析预测,并证明对流体流动参数的明智选择可以实现任意纯度的粒子分选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信