{"title":"Adaptive QoS-Aware Microservice Deployment With Excessive Loads via Intra- and Inter-Datacenter Scheduling","authors":"Jiuchen Shi;Kaihua Fu;Jiawen Wang;Quan Chen;Deze Zeng;Minyi Guo","doi":"10.1109/TPDS.2024.3425931","DOIUrl":null,"url":null,"abstract":"User-facing applications often experience excessive loads and are shifting towards the microservice architecture. To fully utilize heterogeneous resources, current datacenters have adopted the disaggregated storage and compute architecture, where the storage and compute clusters are suitable to deploy the stateful and stateless microservices, respectively. Moreover, when the local datacenter has insufficient resources to host excessive loads, a reasonable solution is moving some microservices to remote datacenters. However, it is nontrivial to decide the appropriate microservice deployment inside the local datacenter and identify the appropriate migration decision to remote datacenters, as microservices show different characteristics, and the local datacenter shows different resource contention situations. We therefore propose ELIS, an intra- and inter-datacenter scheduling system that ensures the Quality-of-Service (QoS) of the microservice application, while minimizing the network bandwidth usage and computational resource usage. ELIS comprises a \n<italic>resource manager</i>\n, a \n<italic>cross-cluster microservice deployer</i>\n, and a \n<italic>reward-based microservice migrator</i>\n. The resource manager allocates near-optimal resources for microservices while ensuring QoS. The microservice deployer deploys the microservices between the storage and compute clusters in the local datacenter, to minimize the network bandwidth usage while satisfying the microservice resource demand. The microservice migrator migrates some microservices to remote datacenters when local resources cannot afford the excessive loads. Experimental results show that ELIS ensures the QoS of user-facing applications. Meanwhile, it reduces the public network bandwidth usage, the remote computational resource usage, and the local network bandwidth usage by 49.6%, 48.5%, and 60.7% on average, respectively.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 9","pages":"1565-1582"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592806/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
User-facing applications often experience excessive loads and are shifting towards the microservice architecture. To fully utilize heterogeneous resources, current datacenters have adopted the disaggregated storage and compute architecture, where the storage and compute clusters are suitable to deploy the stateful and stateless microservices, respectively. Moreover, when the local datacenter has insufficient resources to host excessive loads, a reasonable solution is moving some microservices to remote datacenters. However, it is nontrivial to decide the appropriate microservice deployment inside the local datacenter and identify the appropriate migration decision to remote datacenters, as microservices show different characteristics, and the local datacenter shows different resource contention situations. We therefore propose ELIS, an intra- and inter-datacenter scheduling system that ensures the Quality-of-Service (QoS) of the microservice application, while minimizing the network bandwidth usage and computational resource usage. ELIS comprises a
resource manager
, a
cross-cluster microservice deployer
, and a
reward-based microservice migrator
. The resource manager allocates near-optimal resources for microservices while ensuring QoS. The microservice deployer deploys the microservices between the storage and compute clusters in the local datacenter, to minimize the network bandwidth usage while satisfying the microservice resource demand. The microservice migrator migrates some microservices to remote datacenters when local resources cannot afford the excessive loads. Experimental results show that ELIS ensures the QoS of user-facing applications. Meanwhile, it reduces the public network bandwidth usage, the remote computational resource usage, and the local network bandwidth usage by 49.6%, 48.5%, and 60.7% on average, respectively.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.