On a planar Pierce--Yung operator

David Beltran, Shaoming Guo, Jonathan Hickman
{"title":"On a planar Pierce--Yung operator","authors":"David Beltran, Shaoming Guo, Jonathan Hickman","doi":"arxiv-2407.07563","DOIUrl":null,"url":null,"abstract":"We show that the operator \\begin{equation*} \\mathcal{C} f(x,y) := \\sup_{v\\in \\mathbb{R}} \\Big|\\mathrm{p.v.}\n\\int_{\\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \\frac{\\mathrm{d} t}{t} \\Big|\n\\end{equation*} is bounded on $L^p(\\mathbb{R}^2)$ for every $1 < p < \\infty$.\nThis gives an affirmative answer to a question of Pierce and Yung.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the operator \begin{equation*} \mathcal{C} f(x,y) := \sup_{v\in \mathbb{R}} \Big|\mathrm{p.v.} \int_{\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \frac{\mathrm{d} t}{t} \Big| \end{equation*} is bounded on $L^p(\mathbb{R}^2)$ for every $1 < p < \infty$. This gives an affirmative answer to a question of Pierce and Yung.
关于平面皮尔斯--杨算子
我们证明算子\f(x,y) := \sup_{v\in \mathbb{R}}\f(x-t, y-t^2) e^{i v t^3}\f(x-t, y-t^2) e^{i v t^3}\对于每$1 < p < \infty$,$L^p(\mathbb{R}^2)$都是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信