{"title":"On a planar Pierce--Yung operator","authors":"David Beltran, Shaoming Guo, Jonathan Hickman","doi":"arxiv-2407.07563","DOIUrl":null,"url":null,"abstract":"We show that the operator \\begin{equation*} \\mathcal{C} f(x,y) := \\sup_{v\\in \\mathbb{R}} \\Big|\\mathrm{p.v.}\n\\int_{\\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \\frac{\\mathrm{d} t}{t} \\Big|\n\\end{equation*} is bounded on $L^p(\\mathbb{R}^2)$ for every $1 < p < \\infty$.\nThis gives an affirmative answer to a question of Pierce and Yung.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the operator \begin{equation*} \mathcal{C} f(x,y) := \sup_{v\in \mathbb{R}} \Big|\mathrm{p.v.}
\int_{\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \frac{\mathrm{d} t}{t} \Big|
\end{equation*} is bounded on $L^p(\mathbb{R}^2)$ for every $1 < p < \infty$.
This gives an affirmative answer to a question of Pierce and Yung.