Climate change research in dry environments of South America: evolution, current state, and future directions

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES
José de Souza Oliveira Filho
{"title":"Climate change research in dry environments of South America: evolution, current state, and future directions","authors":"José de Souza Oliveira Filho","doi":"10.1007/s11368-024-03855-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Drylands occupy 41% of the Earth's surface and 31% of South America. In these environments, anthropogenic climate changes may contribute to the intensification of droughts and increase the susceptibility of lands to desertification. In this study, the evolution, current topics, and the research trends in climate change in four dry environments in South America (Caatinga, Patagonia, Gran Chaco, and the Atacama Desert) were analyzed.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The database was obtained from the Core Collection of Web of Science. A total of 1,386 scientific papers (1993–2022) were analyzed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Patagonia accounted for 37.4% of research on climate change in the four studied environments, while the Gran Chaco accounted for only 6.9%. Overall, the research trends indicate the need for the understanding in the increasing severity of drought in the Caatinga and the intensification of fire frequency in the Gran Chaco on soil properties, animals, and plants. The implementation of more sustainable animal production systems, aiming at soil conservation and reducing greenhouse gases (GHG) emissions should be a priority in Patagonia. In Atacama Desert, the relationship between climate change and soil microbiome, as well as plant-microorganism interactions under hyper-arid conditions, represent important research trends in this ecosystem. Across all biomes, quantification of GHG emissions, the development of strategies to promote C sequestration by biomass and in soils and studies to understand the effects of climate change on people's lives have been scarce and urgently need implementation.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>There is an urgent need to implement public policies aimed at mitigating and adapting to climate change in the dry climate environments of South America with emphasis on the Gran Chaco, where climate-environmental research is limited, and ecosystem degradation is pronounced.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"151 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03855-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Drylands occupy 41% of the Earth's surface and 31% of South America. In these environments, anthropogenic climate changes may contribute to the intensification of droughts and increase the susceptibility of lands to desertification. In this study, the evolution, current topics, and the research trends in climate change in four dry environments in South America (Caatinga, Patagonia, Gran Chaco, and the Atacama Desert) were analyzed.

Methods

The database was obtained from the Core Collection of Web of Science. A total of 1,386 scientific papers (1993–2022) were analyzed.

Results

Patagonia accounted for 37.4% of research on climate change in the four studied environments, while the Gran Chaco accounted for only 6.9%. Overall, the research trends indicate the need for the understanding in the increasing severity of drought in the Caatinga and the intensification of fire frequency in the Gran Chaco on soil properties, animals, and plants. The implementation of more sustainable animal production systems, aiming at soil conservation and reducing greenhouse gases (GHG) emissions should be a priority in Patagonia. In Atacama Desert, the relationship between climate change and soil microbiome, as well as plant-microorganism interactions under hyper-arid conditions, represent important research trends in this ecosystem. Across all biomes, quantification of GHG emissions, the development of strategies to promote C sequestration by biomass and in soils and studies to understand the effects of climate change on people's lives have been scarce and urgently need implementation.

Conclusion

There is an urgent need to implement public policies aimed at mitigating and adapting to climate change in the dry climate environments of South America with emphasis on the Gran Chaco, where climate-environmental research is limited, and ecosystem degradation is pronounced.

Abstract Image

南美洲干旱环境中的气候变化研究:演变、现状和未来方向
目的旱地占地球表面的 41% 和南美洲的 31%。在这些环境中,人为气候变化可能导致干旱加剧,并增加土地荒漠化的可能性。本研究分析了南美洲四种干旱环境(卡廷加、巴塔哥尼亚、大查科和阿塔卡马沙漠)气候变化的演变、当前主题和研究趋势。结果在所研究的四个环境中,巴塔哥尼亚占气候变化研究的 37.4%,而大查科仅占 6.9%。总体而言,研究趋势表明,有必要了解卡廷加地区日益严重的干旱和大查科地区日益频繁的火灾对土壤特性、动物和植物的影响。巴塔哥尼亚应优先考虑实施更可持续的动物生产系统,以保护土壤和减少温室气体(GHG)排放。在阿塔卡马沙漠,气候变化与土壤微生物群之间的关系,以及超干旱条件下植物与微生物之间的相互作用,是该生态系统的重要研究趋势。在所有生物群落中,温室气体排放量的量化、促进生物质和土壤固碳战略的制定以及了解气候变化对人类生活影响的研究都十分匮乏,亟待实施。 结论:在南美洲干旱气候环境中,迫切需要实施旨在减缓和适应气候变化的公共政策,重点是气候环境研究有限、生态系统退化明显的大查科地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信