Positive solutions of Kirchhoff type problems with critical growth on exterior domains

IF 1.4 3区 数学 Q1 MATHEMATICS
Ting-Ting Dai, Zeng-Qi Ou, Chun-Lei Tang, Ying Lv
{"title":"Positive solutions of Kirchhoff type problems with critical growth on exterior domains","authors":"Ting-Ting Dai,&nbsp;Zeng-Qi Ou,&nbsp;Chun-Lei Tang,&nbsp;Ying Lv","doi":"10.1007/s13324-024-00944-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the existence of positive solutions for a class of Kirchhoff equation with critical growth </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-\\left( a+b \\int _{\\Omega }|\\nabla u|^{2} d x\\right) \\Delta u+V(x) u=u^{5}&amp;\\text{ in } \\Omega , \\\\&amp;u\\in D^{1,2}_0(\\Omega ), \\end{aligned}\\right. \\end{aligned}$$</span></div></div><p>where <span>\\(a&gt;0\\)</span>, <span>\\(b&gt;0\\)</span>, <span>\\(V\\in L^\\frac{3}{2}(\\Omega )\\)</span> is a given nonnegative function and <span>\\(\\Omega \\subseteq \\mathbb {R}^3\\)</span> is an exterior domain, that is, an unbounded domain with smooth boundary <span>\\(\\partial \\Omega \\ne \\emptyset \\)</span> such that <span>\\(\\mathbb {R}^3\\backslash \\Omega \\)</span> non-empty and bounded. By using barycentric functions and Brouwer degree theory to prove that there exists a positive solution <span>\\(u\\in D^{1,2}_0(\\Omega )\\)</span> if <span>\\(\\mathbb {R}^3\\backslash \\Omega \\)</span> is contained in a small ball.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00944-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence of positive solutions for a class of Kirchhoff equation with critical growth

$$\begin{aligned} \left\{ \begin{aligned}&-\left( a+b \int _{\Omega }|\nabla u|^{2} d x\right) \Delta u+V(x) u=u^{5}&\text{ in } \Omega , \\&u\in D^{1,2}_0(\Omega ), \end{aligned}\right. \end{aligned}$$

where \(a>0\), \(b>0\), \(V\in L^\frac{3}{2}(\Omega )\) is a given nonnegative function and \(\Omega \subseteq \mathbb {R}^3\) is an exterior domain, that is, an unbounded domain with smooth boundary \(\partial \Omega \ne \emptyset \) such that \(\mathbb {R}^3\backslash \Omega \) non-empty and bounded. By using barycentric functions and Brouwer degree theory to prove that there exists a positive solution \(u\in D^{1,2}_0(\Omega )\) if \(\mathbb {R}^3\backslash \Omega \) is contained in a small ball.

外部域上具有临界增长的基尔霍夫类型问题的正解
本文研究了一类具有临界增长的基尔霍夫方程的正解存在性。\left\{ \begin{aligned}&-\left( a+b \int _{\Omega }|\nabla u|^{2} d x\right) \Delta u+V(x) u=u^{5}&\text{ in }\Omega , \&u\in D^{1,2}_0(\Omega ), \end{aligned}\right.\end{aligned}$where \(a>0\), \(b>;0), (V\in L^frac{3}{2}(\Omega )\) 是一个给定的非负函数,并且 ((\Omega \subseteq \mathbb {R}^3\) 是一个外部域,也就是说、一个具有光滑边界的无界域,使得 (mathbb {R}^3\backslash \Omega \)非空且有界。通过使用巴里中心函数和布劳威尔度理论证明,如果\(\mathbb {R}^3\backslash \Omega \)包含在一个小球中,则存在一个正解\(u\in D^{1,2}_0(\Omega )\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信