{"title":"Doubly Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients","authors":"Shengqiu Sun","doi":"10.1007/s10959-024-01358-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider doubly reflected backward stochastic differential equations driven by <i>G</i>-Brownian motion with uniformly continuous coefficients. The existence of solutions can be obtained by a monotone convergence argument, a linearization method, a penalization method and the method of Picard iteration.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01358-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider doubly reflected backward stochastic differential equations driven by G-Brownian motion with uniformly continuous coefficients. The existence of solutions can be obtained by a monotone convergence argument, a linearization method, a penalization method and the method of Picard iteration.