On examining the predictive capabilities of two variants of PINN in validating localised wave solutions in the generalized nonlinear Schrödinger equation

Thulasidharan K., Sinthuja N., Vishnu Priya N., Senthilvelan M
{"title":"On examining the predictive capabilities of two variants of PINN in validating localised wave solutions in the generalized nonlinear Schrödinger equation","authors":"Thulasidharan K., Sinthuja N., Vishnu Priya N., Senthilvelan M","doi":"arxiv-2407.07415","DOIUrl":null,"url":null,"abstract":"We introduce a novel neural network structure called Strongly Constrained\nTheory-Guided Neural Network (SCTgNN), to investigate the behaviours of the\nlocalized solutions of the generalized nonlinear Schr\\\"{o}dinger (NLS)\nequation. This equation comprises four physically significant nonlinear\nevolution equations, namely, (i) NLS equation, Hirota equation\nLakshmanan-Porsezian-Daniel (LPD) equation and fifth-order NLS equation. The\ngeneralized NLS equation demonstrates nonlinear effects up to quintic order,\nindicating rich and complex dynamics in various fields of physics. By combining\nconcepts from the Physics-Informed Neural Network (PINN) and Theory-Guided\nNeural Network (TgNN) models, SCTgNN aims to enhance our understanding of\ncomplex phenomena, particularly within nonlinear systems that defy conventional\npatterns. To begin, we employ the TgNN method to predict the behaviours of\nlocalized waves, including solitons, rogue waves, and breathers, within the\ngeneralized NLS equation. We then use SCTgNN to predict the aforementioned\nlocalized solutions and calculate the mean square errors in both SCTgNN and\nTgNN in predicting these three localized solutions. Our findings reveal that\nboth models excel in understanding complex behaviours and provide predictions\nacross a wide variety of situations.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel neural network structure called Strongly Constrained Theory-Guided Neural Network (SCTgNN), to investigate the behaviours of the localized solutions of the generalized nonlinear Schr\"{o}dinger (NLS) equation. This equation comprises four physically significant nonlinear evolution equations, namely, (i) NLS equation, Hirota equation Lakshmanan-Porsezian-Daniel (LPD) equation and fifth-order NLS equation. The generalized NLS equation demonstrates nonlinear effects up to quintic order, indicating rich and complex dynamics in various fields of physics. By combining concepts from the Physics-Informed Neural Network (PINN) and Theory-Guided Neural Network (TgNN) models, SCTgNN aims to enhance our understanding of complex phenomena, particularly within nonlinear systems that defy conventional patterns. To begin, we employ the TgNN method to predict the behaviours of localized waves, including solitons, rogue waves, and breathers, within the generalized NLS equation. We then use SCTgNN to predict the aforementioned localized solutions and calculate the mean square errors in both SCTgNN and TgNN in predicting these three localized solutions. Our findings reveal that both models excel in understanding complex behaviours and provide predictions across a wide variety of situations.
论检验 PINN 两种变体在验证广义非线性薛定谔方程中局部波解的预测能力
我们引入了一种名为 "强约束理论指导神经网络(SCTgNN)"的新型神经网络结构,用于研究广义非线性薛定谔方程(NLS)的局部解的行为。该方程包括四个物理上重要的非线性革命方程,即 (i) NLS 方程、Hirota 方程、Lakshmanan-Porsezian-Daniel(LPD)方程和五阶 NLS 方程。广义 NLS 方程展示了高达五阶的非线性效应,显示了物理学各领域丰富而复杂的动力学。通过结合物理信息神经网络(PINN)和理论指导神经网络(TgNN)模型的概念,SCTgNN 旨在增强我们对复杂现象的理解,尤其是对非线性系统中违背传统模式的现象的理解。首先,我们采用 TgNN 方法来预测广义 NLS 方程中局部波的行为,包括孤子、流氓波和呼吸波。然后,我们使用 SCTgNN 预测上述局部解,并计算 SCTgNN 和 TgNN 在预测这三种局部解时的均方误差。我们的研究结果表明,这两种模型都能很好地理解复杂行为,并能预测各种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信