Fractional dynamics of entropy generation in unsteady mixed convection of a reacting nanofluid over a slippery permeable plate in Darcy–Forchheimer porous medium

O. D. Makinde, Zafar Hayat Khan, Alexander Trounev, Waqar A. Khan, Rashid Ahmad
{"title":"Fractional dynamics of entropy generation in unsteady mixed convection of a reacting nanofluid over a slippery permeable plate in Darcy–Forchheimer porous medium","authors":"O. D. Makinde, Zafar Hayat Khan, Alexander Trounev, Waqar A. Khan, Rashid Ahmad","doi":"10.1002/zamm.202400083","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical investigation of the inherent irreversibility in unsteady fractional time derivative mixed convection of a reacting nanofluid with heat and mass transfer mechanism over a slippery permeable plate embedded in a Darcy–Forchheimer porous medium. The model fractional partial differential equations are obtained based on conservation laws and numerically solved using the implicit finite difference scheme. The study displays and discusses the effects of various emerging parameters on the overall flow structure, such as velocity profiles, temperature distribution, nanoparticles concentration profiles, skin friction, Nusselt number, Sherwood number, entropy generation rate, and Bejan number. It was found that an increase in dimensionless time and fractional parameters leads to a decrease in both the entropy generation rate and the Bejan number. The study revealed that fractional order derivatives can capture intrinsic memory effects, non‐local behaviour, and anomalous diffusion in the nanofluid flow process. This can ultimately lead to better engineering system design and control.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a theoretical investigation of the inherent irreversibility in unsteady fractional time derivative mixed convection of a reacting nanofluid with heat and mass transfer mechanism over a slippery permeable plate embedded in a Darcy–Forchheimer porous medium. The model fractional partial differential equations are obtained based on conservation laws and numerically solved using the implicit finite difference scheme. The study displays and discusses the effects of various emerging parameters on the overall flow structure, such as velocity profiles, temperature distribution, nanoparticles concentration profiles, skin friction, Nusselt number, Sherwood number, entropy generation rate, and Bejan number. It was found that an increase in dimensionless time and fractional parameters leads to a decrease in both the entropy generation rate and the Bejan number. The study revealed that fractional order derivatives can capture intrinsic memory effects, non‐local behaviour, and anomalous diffusion in the nanofluid flow process. This can ultimately lead to better engineering system design and control.
达西-福克海默(Darcy-Forchheimer)多孔介质中滑透板上反应纳米流体非稳定混合对流中熵生成的分数动力学
本文对嵌入达西-福克海默多孔介质的滑动渗透板上具有传热传质机制的反应纳米流体的非稳态分时导数混合对流的内在不可逆性进行了理论研究。根据守恒定律得到了模型分数偏微分方程,并使用隐式有限差分方案进行了数值求解。研究显示并讨论了各种新出现的参数对整个流动结构的影响,如速度剖面、温度分布、纳米颗粒浓度剖面、表皮摩擦、努塞尔特数、舍伍德数、熵产生率和贝扬数。研究发现,无量纲时间和分数参数的增加会导致熵产生率和贝扬数的降低。研究表明,分数阶导数可以捕捉纳米流体流动过程中的内在记忆效应、非局部行为和异常扩散。这最终会带来更好的工程系统设计和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信