A deep graph model for the signed interaction prediction in biological network

Shuyi Jin, Mengji Zhang, Meijie Wang, Lun Yu
{"title":"A deep graph model for the signed interaction prediction in biological network","authors":"Shuyi Jin, Mengji Zhang, Meijie Wang, Lun Yu","doi":"arxiv-2407.07357","DOIUrl":null,"url":null,"abstract":"In pharmaceutical research, the strategy of drug repurposing accelerates the\ndevelopment of new therapies while reducing R&D costs. Network pharmacology\nlays the theoretical groundwork for identifying new drug indications, and deep\ngraph models have become essential for their precision in mapping complex\nbiological networks. Our study introduces an advanced graph model that utilizes\ngraph convolutional networks and tensor decomposition to effectively predict\nsigned chemical-gene interactions. This model demonstrates superior predictive\nperformance, especially in handling the polar relations in biological networks.\nOur research opens new avenues for drug discovery and repurposing, especially\nin understanding the mechanism of actions of drugs.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"376 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In pharmaceutical research, the strategy of drug repurposing accelerates the development of new therapies while reducing R&D costs. Network pharmacology lays the theoretical groundwork for identifying new drug indications, and deep graph models have become essential for their precision in mapping complex biological networks. Our study introduces an advanced graph model that utilizes graph convolutional networks and tensor decomposition to effectively predict signed chemical-gene interactions. This model demonstrates superior predictive performance, especially in handling the polar relations in biological networks. Our research opens new avenues for drug discovery and repurposing, especially in understanding the mechanism of actions of drugs.
用于预测生物网络中签名交互作用的深度图模型
在制药研究中,药物再利用战略可以加速新疗法的开发,同时降低研发成本。网络药理学为确定新药适应症奠定了理论基础,而深度图模型因其在映射复杂生物网络方面的精确性而变得至关重要。我们的研究介绍了一种先进的图模型,它利用图卷积网络和张量分解来有效预测指定的化学基因相互作用。我们的研究为药物发现和再利用开辟了新途径,尤其是在理解药物的作用机制方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信