ANNOTE: Annotation of time-series events

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
René Groh , Jie Yu Li , Nicole Y.K. Li-Jessen , Andreas M. Kist
{"title":"ANNOTE: Annotation of time-series events","authors":"René Groh ,&nbsp;Jie Yu Li ,&nbsp;Nicole Y.K. Li-Jessen ,&nbsp;Andreas M. Kist","doi":"10.1016/j.simpa.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><p>Supervised training of machine learning models heavily relies on accurate annotations. However, data annotation, such as in the case of time-series signals, poses a labor-intensive challenge. Here, we present a new annotation software, Annotation of Time-series Events (ANNOTE), to handle longitudinal, time-series signals as in highly complex physiological events. ANNOTE offers flexibility and adaptability to streamline the annotation process through an intuitive user interface, effectively meeting diverse annotation needs. Users can annotate regions of interest with precision down to a single data point. ANNOTE presents a useful tool to support researchers in handling time-series biomedical data for downstream machine-learning analyses.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100679"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000678/pdfft?md5=264eb9466e32bc08ed480071e4ae3159&pid=1-s2.0-S2665963824000678-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised training of machine learning models heavily relies on accurate annotations. However, data annotation, such as in the case of time-series signals, poses a labor-intensive challenge. Here, we present a new annotation software, Annotation of Time-series Events (ANNOTE), to handle longitudinal, time-series signals as in highly complex physiological events. ANNOTE offers flexibility and adaptability to streamline the annotation process through an intuitive user interface, effectively meeting diverse annotation needs. Users can annotate regions of interest with precision down to a single data point. ANNOTE presents a useful tool to support researchers in handling time-series biomedical data for downstream machine-learning analyses.

注释:时间序列事件的注释
机器学习模型的监督训练在很大程度上依赖于准确的注释。然而,数据注释(如时间序列信号)是一项劳动密集型挑战。在此,我们介绍一款新的注释软件--时间序列事件注释(ANNOTE),用于处理纵向时间序列信号,如高度复杂的生理事件。ANNOTE 具有灵活性和适应性,可通过直观的用户界面简化注释过程,有效满足各种注释需求。用户可以精确到单个数据点来注释感兴趣的区域。ANNOTE 是支持研究人员处理时间序列生物医学数据以进行下游机器学习分析的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信