{"title":"MC-ShuffleNetV2: A lightweight model for maize disease recognition","authors":"Shaoqiu Zhu , Haitao Gao","doi":"10.1016/j.eij.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>Maize has a long history of cultivation and is renowned for its high yield, superior quality, and adaptability. Currently, maize holds a significant position in grain cultivation and occupies a significant place in the agricultural structure. However, maize is susceptible to various diseases during its growth process, which can have a significant impact on the quality and yield. Traditional machine learning is heavily reliant on feature extraction, whereas deep learning has demonstrated notable success in image recognition for computer vision.The use of bloated models and the resulting wastage of computational resources represent significant challenges. The paper proposes a lightweight model, MC-ShuffleNetV2 (Mish + Convolutional Block Attention Module + ShuffleNetV2), to meet the practical needs of convolutional neural networks in maize disease image recognition. The model has designed with a focus on network lightweighting and accurate feature extraction. The model was constructed upon the foundation of the high-performance ShuffleNetV2 1 × network. The Convolutional Block Attention Module was integrated into the network architecture to enhance the model’s adaptive expressiveness. The depthwise separable convolution kernel of the depth-separable module was modified from a 3 × 3 kernel to a 5 × 5 kernel. This modification was implemented with the objective of expanding the image receptive field and extracting more detailed features of the image. It was necessary to modify the activation function in each stage for Mish. The model was compressed through the application of pruning operations. In the maize disease dataset test, the accuracy of the test set recognition accuracy of the network model constructed in this paper reaches 99.86 %, the model parameters are only 873,936, and the FLOPs (Floating-point Operations) are only 1,751,286. Compared with LeNet, AlexNet, MobileNetV2, and EfficientNetV2 models, the MC-ShufflenetV2 model’s recognition ability and size have obvious advantages, and it is more conducive to the actual deployment of the agricultural mobile terminal.</p></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110866524000665/pdfft?md5=b6fc6748f084b0530dace13f462b152c&pid=1-s2.0-S1110866524000665-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524000665","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Maize has a long history of cultivation and is renowned for its high yield, superior quality, and adaptability. Currently, maize holds a significant position in grain cultivation and occupies a significant place in the agricultural structure. However, maize is susceptible to various diseases during its growth process, which can have a significant impact on the quality and yield. Traditional machine learning is heavily reliant on feature extraction, whereas deep learning has demonstrated notable success in image recognition for computer vision.The use of bloated models and the resulting wastage of computational resources represent significant challenges. The paper proposes a lightweight model, MC-ShuffleNetV2 (Mish + Convolutional Block Attention Module + ShuffleNetV2), to meet the practical needs of convolutional neural networks in maize disease image recognition. The model has designed with a focus on network lightweighting and accurate feature extraction. The model was constructed upon the foundation of the high-performance ShuffleNetV2 1 × network. The Convolutional Block Attention Module was integrated into the network architecture to enhance the model’s adaptive expressiveness. The depthwise separable convolution kernel of the depth-separable module was modified from a 3 × 3 kernel to a 5 × 5 kernel. This modification was implemented with the objective of expanding the image receptive field and extracting more detailed features of the image. It was necessary to modify the activation function in each stage for Mish. The model was compressed through the application of pruning operations. In the maize disease dataset test, the accuracy of the test set recognition accuracy of the network model constructed in this paper reaches 99.86 %, the model parameters are only 873,936, and the FLOPs (Floating-point Operations) are only 1,751,286. Compared with LeNet, AlexNet, MobileNetV2, and EfficientNetV2 models, the MC-ShufflenetV2 model’s recognition ability and size have obvious advantages, and it is more conducive to the actual deployment of the agricultural mobile terminal.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.