R. Meenakshi , R. Aram Senthil Srinivasan , A. Amudhavalli , K. Iyakutti , Y. Kawazoe , R. Rajeswara Palanichamy
{"title":"Structural, electronic, magnetic, and thermoelectric properties of half Heusler alloys ZrCo1-XFeXSb (X = 0, 0.25, 0.5, 0.75, 1): A DFT study","authors":"R. Meenakshi , R. Aram Senthil Srinivasan , A. Amudhavalli , K. Iyakutti , Y. Kawazoe , R. Rajeswara Palanichamy","doi":"10.1016/j.solidstatesciences.2024.107627","DOIUrl":null,"url":null,"abstract":"<div><p>The structural, electronic, magnetic, and thermoelectric properties of half-Heusler alloys ZrCo<sub>1-X</sub>Fe<sub>X</sub>Sb (X = 0, 0.25, 0.5, 0.75, 1) are investigated using the density functional theory. It is evident that ZrCoSbis a non-magnetic semiconductor. This study investigates the influence of substituting Fe for Co on the electronic structure and magnetic characteristics of ZrCoSb. The alloys transform into half-metallic ferromagnets as Fe substitutes Co. The indirect band gap of the ZrCo<sub>1-X</sub>Fe<sub>X</sub>Sb alloys decreases with increasing Fe content. The phonon dispersion curve is studied to determine the structural stability. The calculated values for the elastic constant for each composition satisfy the criteria for mechanical stability. To analyse its thermoelectric properties, the semi-classical Boltzmann transport theory is used to determine the Seebeck coefficients, electrical and thermal conductivities, and power factor as a function of temperature.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824001924","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The structural, electronic, magnetic, and thermoelectric properties of half-Heusler alloys ZrCo1-XFeXSb (X = 0, 0.25, 0.5, 0.75, 1) are investigated using the density functional theory. It is evident that ZrCoSbis a non-magnetic semiconductor. This study investigates the influence of substituting Fe for Co on the electronic structure and magnetic characteristics of ZrCoSb. The alloys transform into half-metallic ferromagnets as Fe substitutes Co. The indirect band gap of the ZrCo1-XFeXSb alloys decreases with increasing Fe content. The phonon dispersion curve is studied to determine the structural stability. The calculated values for the elastic constant for each composition satisfy the criteria for mechanical stability. To analyse its thermoelectric properties, the semi-classical Boltzmann transport theory is used to determine the Seebeck coefficients, electrical and thermal conductivities, and power factor as a function of temperature.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.